These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8698691)

  • 21. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel.
    Blanda G; Brucato V; Pavia FC; Greco S; Piazza S; Sunseri C; Inguanta R
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():93-101. PubMed ID: 27127032
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical preparation of chitosan/hydroxyapatite composite coatings on titanium substrates.
    Redepenning J; Venkataraman G; Chen J; Stafford N
    J Biomed Mater Res A; 2003 Aug; 66(2):411-6. PubMed ID: 12889012
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydroxyapatite-clay bone fixation for loaded implants.
    Maruyama M
    J Biomed Mater Res; 1995 Jun; 29(6):683-6. PubMed ID: 7593003
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Induction suspension plasma sprayed biological-like hydroxyapatite coatings.
    Loszach M; Gitzhofer F
    J Biomater Appl; 2015 Apr; 29(9):1256-71. PubMed ID: 25586411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deposition of calcium phosphate coatings using condensed phosphates (P2O7(4-) and P3O10(5-)) as phosphate source through induction heating.
    Zhou H; Hou S; Zhang M; Yang M; Deng L; Xiong X; Ni X
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():337-42. PubMed ID: 27612721
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Degradation potential of plasma-sprayed hydroxyapatite-coated titanium implants.
    Paschalis EP; Zhao Q; Tucker BE; Mukhopadhayay S; Bearcroft JA; Beals NB; Spector M; Nancollas GH
    J Biomed Mater Res; 1995 Dec; 29(12):1499-505. PubMed ID: 8600140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microstructure, in vitro corrosion and cytotoxicity of Ca-P coatings on ZK60 magnesium alloy prepared by simple chemical conversion and heat treatment.
    Li K; Wang B; Yan B; Lu W
    J Biomater Appl; 2013 Sep; 28(3):375-84. PubMed ID: 22807584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanometer-scale surface modification of Ti6Al4V alloy for orthopedic applications.
    Xie J; Luan BL
    J Biomed Mater Res A; 2008 Jan; 84(1):63-72. PubMed ID: 17600328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants.
    Ducheyne P; Hench LL; Kagan A; Martens M; Bursens A; Mulier JC
    J Biomed Mater Res; 1980 May; 14(3):225-37. PubMed ID: 7364787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnetron co-sputtered silicon-containing hydroxyapatite thin films--an in vitro study.
    Thian ES; Huang J; Best SM; Barber ZH; Bonfield W
    Biomaterials; 2005 Jun; 26(16):2947-56. PubMed ID: 15603789
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical and chemical bonding of artificial joints.
    Oonishi H
    Clin Mater; 1990; 5(2-4):217-33. PubMed ID: 10147505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone growth is enhanced by novel bioceramic coatings on Ti alloy implants.
    Wang C; Karlis GA; Anderson GI; Dunstan CR; Carbone A; Berger G; Ploska U; Zreiqat H
    J Biomed Mater Res A; 2009 Aug; 90(2):419-28. PubMed ID: 18523954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemically assisted deposition of thin calcium phosphate coatings at near-physiological pH and temperature.
    Rössler S; Sewing A; Stölzel M; Born R; Scharnweber D; Dard M; Worch H
    J Biomed Mater Res A; 2003 Mar; 64(4):655-63. PubMed ID: 12601777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of bone ingrowth into cobalt chrome sphere and titanium fiber mesh porous coated cementless canine acetabular components.
    Jasty M; Bragdon CR; Haire T; Mulroy RD; Harris WH
    J Biomed Mater Res; 1993 May; 27(5):639-44. PubMed ID: 8314816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro osteoblast-like cell proliferation on nano-hydroxyapatite coatings with different morphologies on a titanium-niobium shape memory alloy.
    Xiong J; Li Y; Hodgson PD; Wen C
    J Biomed Mater Res A; 2010 Dec; 95(3):766-73. PubMed ID: 20725978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of plasma-sprayed calcium phosphate ceramic coatings on the metal ion release from porous titanium and cobalt-chromium alloys.
    Ducheyne P; Healy KE
    J Biomed Mater Res; 1988 Dec; 22(12):1137-63. PubMed ID: 3235457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphology and composition of hydroxyapatite coatings prepared by hydrothermal treatment on electrodeposited brushite coatings.
    Han Y; Xu K; Lu J
    J Mater Sci Mater Med; 1999 Apr; 10(4):243-8. PubMed ID: 15348158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrohydrodynamic coating of metal with nano-sized hydroxyapatite.
    Li X; Huang J; Ahmad Z; Edirisinghe M
    Biomed Mater Eng; 2007; 17(6):335-46. PubMed ID: 18032815
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Porous titanium and silicon-substituted hydroxyapatite biomodification prepared by a biomimetic process: characterization and in vivo evaluation.
    Zhang E; Zou C
    Acta Biomater; 2009 Jun; 5(5):1732-41. PubMed ID: 19217362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Powder metal-made orthopedic implants with porous surface for fixation by tissue ingrowth.
    Pilliar RM
    Clin Orthop Relat Res; 1983 Jun; (176):42-51. PubMed ID: 6851341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.