These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8698893)

  • 21. Ascending projections of the brain stem reticular formation in a nonmammalian vertebrate (the lizard Varanus exanthematicus), with notes on the afferent connections of the forebrain.
    Ten Donkelaar HJ; De Boer-Van Huizen R
    J Comp Neurol; 1981 Aug; 200(4):501-28. PubMed ID: 7263959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alterations in the Xenopus retinotectal projection by antibodies to Xenopus N-CAM.
    Fraser SE; Carhart MS; Murray BA; Chuong CM; Edelman GM
    Dev Biol; 1988 Sep; 129(1):217-30. PubMed ID: 3044878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distribution of neurons projecting to the retina of Caiman crocodilus.
    Ferguson JL; Mulvanny PJ; Brauth SE
    Brain Behav Evol; 1978; 15(4):294-306. PubMed ID: 81087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Somatosensory projection to the mesencephalon: an anatomical study in the monkey.
    Wiberg M; Westman J; Blomqvist A
    J Comp Neurol; 1987 Oct; 264(1):92-117. PubMed ID: 2445793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Posterior commissural connections of area pretectalis and neighboring structures in cat, with special reference to pupilloconstrictory pathway via posterior commissure.
    Shoumura K; Imai H; Kimura S; Suzuki T; Ara M
    Jpn J Ophthalmol; 1987; 31(2):289-304. PubMed ID: 3669428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anomalous ipsilateral retinotectal projections in Syrian hamsters with early lesions: topography and functional capacity.
    Finlay BL; Wilson KG; Schneider GE
    J Comp Neurol; 1979 Feb; 183(4):721-40. PubMed ID: 762269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pathways of regenerated retinotectal axons in goldfish. I. Optic nerve, tract and tectal fascicle layer.
    Stuermer CA
    J Embryol Exp Morphol; 1986 Apr; 93():1-28. PubMed ID: 3734679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Comments on the topography of the crossed isthmo-tectal projection in the frog].
    Gaillard F
    C R Seances Acad Sci III; 1983; 296(18):865-70. PubMed ID: 6192883
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organization of the intercollicular pathway in rat.
    Yamasaki DS; Krauthamer G; Rhoades RW
    Brain Res; 1984 May; 300(2):368-71. PubMed ID: 6733480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fiber connections of the nucleus isthmi in the carp (Cyprinus carpio) and tilapia (Oreochromis niloticus).
    Xue HG; Yamamoto N; Yoshimoto M; Yang CY; Ito H
    Brain Behav Evol; 2001; 58(4):185-204. PubMed ID: 11964496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Histochemical localization of cytochrome oxidase in the retina and optic tectum of normal goldfish: a combined cytochrome oxidase-horseradish peroxidase study.
    Kageyama GH; Meyer RL
    J Comp Neurol; 1988 Apr; 270(3):354-71. PubMed ID: 2836476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens.
    Reh TA; Pitts E; Constantine-Paton M
    J Comp Neurol; 1983 Aug; 218(3):282-96. PubMed ID: 6604077
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The organization of descending tectofugal pathways underlying orienting in the frog, Rana pipiens. II. Evidence for the involvement of a tecto-tegmento-spinal pathway.
    Masino T; Grobstein P
    Exp Brain Res; 1989; 75(2):245-64. PubMed ID: 2785926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Axons added to the regenerated visual pathway of goldfish establish a normal fiber topography along the age-axis.
    Bernhardt R; Easter SS; Raymond PA
    J Comp Neurol; 1988 Nov; 277(3):420-9. PubMed ID: 3198799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experience-dependent plasticity of excitatory and inhibitory intertectal inputs in Xenopus tadpoles.
    Gambrill AC; Faulkner R; Cline HT
    J Neurophysiol; 2016 Nov; 116(5):2281-2297. PubMed ID: 27582296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optic tectum of the eastern garter snake, Thamnophis sirtalis. I. Efferent pathways.
    Dacey DM; Ulinski PS
    J Comp Neurol; 1986 Mar; 245(1):1-28. PubMed ID: 3958240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of commissural neurons in the wallaby (Macropus eugenii).
    Shang F; Ashwell KW; Marotte LR; Waite PM
    J Comp Neurol; 1997 Nov; 387(4):507-23. PubMed ID: 9373010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Normal and regenerating optic fibers in goldfish tectum: HRP-EM evidence for rapid synaptogenesis and optic fiber-fiber affinity.
    Hayes WP; Meyer RL
    J Comp Neurol; 1988 Aug; 274(4):516-38. PubMed ID: 2464622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optic synapse number but not density is constrained during regeneration onto surgically halved tectum in goldfish: HRP-EM evidence that optic fibers compete for fixed numbers of postsynaptic sites on the tectum.
    Hayes WP; Meyer RL
    J Comp Neurol; 1988 Aug; 274(4):539-59. PubMed ID: 2464623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synapses of optic axons with GABA- and glutamate-containing elements in the optic tectum of Bufo marinus.
    Gábriel R; Straznicky C
    J Hirnforsch; 1995; 36(3):329-40. PubMed ID: 7560905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.