BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 8698902)

  • 1. Serotonergic axons in monkey prefrontal cerebral cortex synapse predominantly on interneurons as demonstrated by serial section electron microscopy.
    Smiley JF; Goldman-Rakic PS
    J Comp Neurol; 1996 Apr; 367(3):431-43. PubMed ID: 8698902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous targets of dopamine synapses in monkey prefrontal cortex demonstrated by serial section electron microscopy: a laminar analysis using the silver-enhanced diaminobenzidine sulfide (SEDS) immunolabeling technique.
    Smiley JF; Goldman-Rakic PS
    Cereb Cortex; 1993; 3(3):223-38. PubMed ID: 7686795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axon terminals immunolabeled for dopamine or tyrosine hydroxylase synapse on GABA-immunoreactive dendrites in rat and monkey cortex.
    Sesack SR; Snyder CL; Lewis DA
    J Comp Neurol; 1995 Dec; 363(2):264-80. PubMed ID: 8642074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The synaptology of parvalbumin-immunoreactive neurons in the primate prefrontal cortex.
    Williams SM; Goldman-Rakic PS; Leranth C
    J Comp Neurol; 1992 Jun; 320(3):353-69. PubMed ID: 1613130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic organization of serotonin-immunoreactive fibers in primary visual cortex of the macaque monkey.
    de Lima AD; Bloom FE; Morrison JH
    J Comp Neurol; 1988 Aug; 274(2):280-94. PubMed ID: 3209742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholinergic synaptic circuitry in the macaque prefrontal cortex.
    Mrzljak L; Pappy M; Leranth C; Goldman-Rakic PS
    J Comp Neurol; 1995 Jul; 357(4):603-17. PubMed ID: 7673486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light and electron microscopic characterization of dopamine-immunoreactive axons in human cerebral cortex.
    Smiley JF; Williams SM; Szigeti K; Goldman-Rakic PS
    J Comp Neurol; 1992 Jul; 321(3):325-35. PubMed ID: 1506472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic targets of pyramidal neurons providing intrinsic horizontal connections in monkey prefrontal cortex.
    Melchitzky DS; Sesack SR; Pucak ML; Lewis DA
    J Comp Neurol; 1998 Jan; 390(2):211-24. PubMed ID: 9453665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential postnatal development of catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus monkey.
    Lambe EK; Krimer LS; Goldman-Rakic PS
    J Neurosci; 2000 Dec; 20(23):8780-7. PubMed ID: 11102486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional differences in the ontogeny of the serotonergic projection to the cerebral cortex.
    Dori I; Dinopoulos A; Blue ME; Parnavelas JG
    Exp Neurol; 1996 Mar; 138(1):1-14. PubMed ID: 8593886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serotoninergic innervation of the cat cerebral cortex.
    Mulligan KA; Törk I
    J Comp Neurol; 1988 Apr; 270(1):86-110. PubMed ID: 3372739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual role of substance P/GABA axons in cortical neurotransmission: synaptic triads on pyramidal cell spines and basket-like innervation of layer II-III calbindin interneurons in primate prefrontal cortex.
    Jakab RL; Goldman-Rakic P; Leranth C
    Cereb Cortex; 1997 Jun; 7(4):359-73. PubMed ID: 9177766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey.
    Somogyi P; Cowey A
    J Comp Neurol; 1981 Feb; 195(4):547-66. PubMed ID: 7462443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural localization of serotonin2A receptors in the middle layers of the rat prelimbic prefrontal cortex.
    Miner LA; Backstrom JR; Sanders-Bush E; Sesack SR
    Neuroscience; 2003; 116(1):107-17. PubMed ID: 12535944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey.
    Freund TF; Martin KA; Soltesz I; Somogyi P; Whitteridge D
    J Comp Neurol; 1989 Nov; 289(2):315-36. PubMed ID: 2808770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructural analysis of prefrontal cortical inputs to the rat amygdala: spatial relationships to presumed dopamine axons and D1 and D2 receptors.
    Pinto A; Sesack SR
    Brain Struct Funct; 2008 Sep; 213(1-2):159-75. PubMed ID: 18340460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular and subcellular sites for noradrenergic action in the monkey dorsolateral prefrontal cortex as revealed by the immunocytochemical localization of noradrenergic receptors and axons.
    Aoki C; Venkatesan C; Go CG; Forman R; Kurose H
    Cereb Cortex; 1998; 8(3):269-77. PubMed ID: 9617922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructure of serotonin-immunoreactive terminals in the core and shell of the rat nucleus accumbens: cellular substrates for interactions with catecholamine afferents.
    Van Bockstaele EJ; Pickel VM
    J Comp Neurol; 1993 Aug; 334(4):603-17. PubMed ID: 8408768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic connections of callosal projection neurons in the vibrissal region of mouse primary motor cortex: an electron microscopic/horseradish peroxidase study.
    Porter LL; White EL
    J Comp Neurol; 1986 Jun; 248(4):573-87. PubMed ID: 3013951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serotoninergic innervation of area 17 in the cat.
    Mulligan KA; Törk I
    Cereb Cortex; 1993; 3(2):108-21. PubMed ID: 7683941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.