These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 8700525)

  • 1. Loss of transactivation and transrepression function, and not RPA binding, alters growth suppression by p53.
    Leiter LM; Chen J; Marathe T; Tanaka M; Dutta A
    Oncogene; 1996 Jun; 12(12):2661-8. PubMed ID: 8700525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-specific transcriptional activation is essential for growth suppression by p53.
    Pietenpol JA; Tokino T; Thiagalingam S; el-Deiry WS; Kinzler KW; Vogelstein B
    Proc Natl Acad Sci U S A; 1994 Mar; 91(6):1998-2002. PubMed ID: 8134338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p53 amino acids 339-346 represent the minimal p53 repression domain.
    Hong TM; Chen JJ; Peck K; Yang PC; Wu CW
    J Biol Chem; 2001 Jan; 276(2):1510-5. PubMed ID: 11007800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction of p53 with replication protein A mediates suppression of homologous recombination.
    Romanova LY; Willers H; Blagosklonny MV; Powell SN
    Oncogene; 2004 Dec; 23(56):9025-33. PubMed ID: 15489903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transactivator proteins VP16 and GAL4 bind replication factor A.
    He Z; Brinton BT; Greenblatt J; Hassell JA; Ingles CJ
    Cell; 1993 Jun; 73(6):1223-32. PubMed ID: 8513504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between replication protein A and p53 is disrupted after UV damage in a DNA repair-dependent manner.
    Abramova NA; Russell J; Botchan M; Li R
    Proc Natl Acad Sci U S A; 1997 Jul; 94(14):7186-91. PubMed ID: 9207066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The basic carboxy-terminal domain of human p53 is dispensable for both transcriptional regulation and inhibition of tumor cell growth.
    Pellegata NS; Cajot JF; Stanbridge EJ
    Oncogene; 1995 Jul; 11(2):337-49. PubMed ID: 7624148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of chromosomal DNA replication in Saccharomyces cerevisiae by acidic transcriptional activation domains.
    Li R; Yu DS; Tanaka M; Zheng L; Berger SL; Stillman B
    Mol Cell Biol; 1998 Mar; 18(3):1296-302. PubMed ID: 9488444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two tandem and independent sub-activation domains in the amino terminus of p53 require the adaptor complex for activity.
    Candau R; Scolnick DM; Darpino P; Ying CY; Halazonetis TD; Berger SL
    Oncogene; 1997 Aug; 15(7):807-16. PubMed ID: 9266967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of an N-terminal transcriptional activation domain within Brn3b/POU4f2.
    Martin SE; Mu X; Klein WH
    Differentiation; 2005 Feb; 73(1):18-27. PubMed ID: 15733064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein.
    Lin J; Chen J; Elenbaas B; Levine AJ
    Genes Dev; 1994 May; 8(10):1235-46. PubMed ID: 7926727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The strength of acidic activation domains correlates with their affinity for both transcriptional and non-transcriptional proteins.
    Melcher K
    J Mol Biol; 2000 Sep; 301(5):1097-112. PubMed ID: 10966808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transactivation ability of p53 transcriptional activation domain is directly related to the binding affinity to TATA-binding protein.
    Chang J; Kim DH; Lee SW; Choi KY; Sung YC
    J Biol Chem; 1995 Oct; 270(42):25014-9. PubMed ID: 7559631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct regions of p53 have a differential role in transcriptional activation and repression functions.
    Sang BC; Chen JY; Minna J; Barbosa MS
    Oncogene; 1994 Mar; 9(3):853-9. PubMed ID: 8108128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. p53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elements.
    Campomenosi P; Monti P; Aprile A; Abbondandolo A; Frebourg T; Gold B; Crook T; Inga A; Resnick MA; Iggo R; Fronza G
    Oncogene; 2001 Jun; 20(27):3573-9. PubMed ID: 11429705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53.
    Xiao H; Pearson A; Coulombe B; Truant R; Zhang S; Regier JL; Triezenberg SJ; Reinberg D; Flores O; Ingles CJ
    Mol Cell Biol; 1994 Oct; 14(10):7013-24. PubMed ID: 7935417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional activation by DNA-binding derivatives of HSV-1 VP16 that lack the carboxyl-terminal acidic activation domain.
    Popova B; Bilan P; Xiao P; Faught M; Capone JP
    Virology; 1995 May; 209(1):19-28. PubMed ID: 7747469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The B cell coactivator Bob1 shows DNA sequence-dependent complex formation with Oct-1/Oct-2 factors, leading to differential promoter activation.
    Gstaiger M; Georgiev O; van Leeuwen H; van der Vliet P; Schaffner W
    EMBO J; 1996 Jun; 15(11):2781-90. PubMed ID: 8654375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel DNA binding of p53 mutants and their role in transcriptional activation.
    Zhang W; Funk WD; Wright WE; Shay JW; Deisseroth AB
    Oncogene; 1993 Sep; 8(9):2555-9. PubMed ID: 8361764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ability to associate with activation domains in vitro is not required for the TATA box-binding protein to support activated transcription in vivo.
    Tansey WP; Herr W
    Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10550-4. PubMed ID: 7479838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.