These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 870151)

  • 1. Sequential chemical modification of a histidyl and a cysteinyl residue in bacterial luciferase.
    Cousineau J; Meighen E
    Can J Biochem; 1977 Apr; 55(4):433-8. PubMed ID: 870151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical modification of bacterial luciferase with ethoxyformic anhydride: evidence for an essential histidyl residue.
    Cousineau J; Meighen E
    Biochemistry; 1976 Nov; 15(23):4992-5000. PubMed ID: 990259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-directed mutagenesis of bacterial luciferase: analysis of the 'essential' thiol.
    Baldwin TO; Chen LH; Chlumsky LJ; Devine JH; Ziegler MM
    J Biolumin Chemilumin; 1989 Jul; 4(1):40-8. PubMed ID: 2678923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical modification and characterization of the alpha cysteine 106 at the Vibrio harveyi luciferase active center.
    Paquatte O; Tu SC
    Photochem Photobiol; 1989 Dec; 50(6):817-25. PubMed ID: 2626493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Affinity labeling of the aldehyde site of bacterial luciferase.
    Fried A; Tu SC
    J Biol Chem; 1984 Sep; 259(17):10754-9. PubMed ID: 6547953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical modification of cysteinyl, lysyl and histidyl residues of mouse liver 17 beta-hydroxysteroid dehydrogenase.
    Nakayama T; Tanabe H; Deyashiki Y; Shinoda M; Hara A; Sawada H
    Biochim Biophys Acta; 1992 Apr; 1120(2):144-50. PubMed ID: 1562580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delineation of bacterial luciferase aldehyde site by bifunctional labeling reagents.
    Paquatte O; Fried A; Tu SC
    Arch Biochem Biophys; 1988 Aug; 264(2):392-9. PubMed ID: 3401008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of histidyl and cysteinyl residues essential for catalysis by 5'-nucleotidase.
    Worku Y; Luzio JP; Newby AC
    FEBS Lett; 1984 Feb; 167(2):235-40. PubMed ID: 6321242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of crystalline reduced nicotinamide adenine dinucleotide phosphate-adrenodoxin reductase from bovine adrenocortical mitochondria. II. Essential histidyl and cysteinyl residues at the NADPH binding site of NADPH-adrenodoxin reductase.
    Hiwatashi A; Ichikawa Y; Yamano T; Maruya N
    Biochemistry; 1976 Jul; 15(14):3091-7. PubMed ID: 8083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial luciferase: demonstration of a catalytically competent altered conformational state following a single turnover.
    AbouKhair NK; Ziegler MM; Baldwin TO
    Biochemistry; 1985 Jul; 24(15):3942-7. PubMed ID: 4052376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical modification of Corynebacterium sarcosine oxidase: role of sulfhydryl and histidyl groups.
    Hayashi S; Suzuki M; Nakamura S
    J Biochem; 1983 Aug; 94(2):551-8. PubMed ID: 6630175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial luciferase. Chemistry of the reactive sulfhydryl.
    Nicoli MZ; Meighen EA; Hastings JW
    J Biol Chem; 1974 Apr; 249(8):2385-92. PubMed ID: 4822498
    [No Abstract]   [Full Text] [Related]  

  • 13. Substrate-induced changes in sulfhydryl reactivity of bacterial D-amino acid transaminase.
    Soper TS; Ueno H; Manning JM
    Arch Biochem Biophys; 1985 Jul; 240(1):1-8. PubMed ID: 4015092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast phenylalanyl-tRNA synthetase. Properties of the histidyl residues.
    Raffin JP; Remy P
    Biochim Biophys Acta; 1978 Aug; 520(1):164-74. PubMed ID: 359050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of pig kidney diamine oxidase with ethoxyformic anhydride and rose bengal: evidence for essential histidyl residue at the active site.
    Shah MA; Ali R
    Biochem Mol Biol Int; 1994 May; 33(1):9-19. PubMed ID: 8081216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essential histidyl residues at the active site(s) of sucrose-phosphate synthase from Prosopis juliflora.
    Sinha AK; Pathre UV; Sane PV
    Biochim Biophys Acta; 1998 Nov; 1388(2):397-404. PubMed ID: 9858774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical modification of 3 alpha,20 beta-hydroxysteroid dehydrogenase with diethyl pyrocarbonate. Evidence for an essential, highly reactive, lysyl residue.
    Pasta P; Mazzola G; Carrea G
    Biochemistry; 1987 Mar; 26(5):1247-51. PubMed ID: 3105578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical modification of Pseudomonas ochraceae 4-hydroxy-4-methyl-2-oxoglutarate aldolase by diethyl pyrocarbonate.
    Maruyama K
    J Biochem; 1991 Dec; 110(6):976-81. PubMed ID: 1794988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical modification of histidyl and lysyl residues in yeast enolase.
    George AL; Borders CL
    Biochim Biophys Acta; 1979 Jul; 569(1):63-9. PubMed ID: 465507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of inhibitory effects of zinc and cadmium ions on agonist binding to adenosine A1 receptors in rat brain.
    Rosati AM; Traversa U
    Biochem Pharmacol; 1999 Aug; 58(4):623-32. PubMed ID: 10413299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.