These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 870207)

  • 21. The irre cell recognition module (IRM) protein Kirre is required to form the reciprocal synaptic network of L4 neurons in the Drosophila lamina.
    Lüthy K; Ahrens B; Rawal S; Lu Z; Tarnogorska D; Meinertzhagen IA; Fischbach KF
    J Neurogenet; 2014; 28(3-4):291-301. PubMed ID: 24697410
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pigment-dispersing hormone-immunoreactive neurons and their relation to serotonergic neurons in the blowfly and cockroach visual system.
    Nässel DR; Shiga S; Wikstrand EM; Rao KR
    Cell Tissue Res; 1991 Dec; 266(3):511-23. PubMed ID: 1811881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterisation of columnar neurons and visual signal processing in the medulla of the locust optic lobe by system identification techniques.
    James AC; Osorio D
    J Comp Physiol A; 1996 Feb; 178(2):183-99. PubMed ID: 8592303
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of the loss of target cells upon photoreceptor inputs in the fly's optic lobe.
    Brandstätter JH; Seyan HS; Meinertzhagen IA
    J Neurocytol; 1992 Oct; 21(10):693-705. PubMed ID: 1279129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-channel polarization analyzer in the sustaining fiber-dimming fiber ensemble of crayfish visual system.
    Glantz RM; McIsaac A
    J Neurophysiol; 1998 Nov; 80(5):2571-83. PubMed ID: 9819264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Postembryonic development of the visual system of the locust, Schistocerca gregaria. I. Patterns of growth and developmental interactions in the retina and optic lobe.
    Anderson H
    J Embryol Exp Morphol; 1978 Jun; 45():55-83. PubMed ID: 670866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dopamine-immunoreactive neurons in the blowfly visual system: light and electron microscopic immunocytochemistry.
    Nässel DR; Elekes K; Johansson KU
    J Chem Neuroanat; 1988; 1(6):311-25. PubMed ID: 3270359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immunocytochemical localization of amines and GABA in the optic lobe of the butterfly, Papilio xuthus.
    Hamanaka Y; Kinoshita M; Homberg U; Arikawa K
    PLoS One; 2012; 7(7):e41109. PubMed ID: 22844431
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light and electron microscopic immunocytochemistry of neurons in the blowfly optic lobe reacting with antisera to RFamide and FMRFamide.
    Nässel DR; Ohlsson LG; Johansson KU; Grimmelikhuijzen CJ
    Neuroscience; 1988 Oct; 27(1):347-62. PubMed ID: 3200445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster.
    Meinertzhagen IA; O'Neil SD
    J Comp Neurol; 1991 Mar; 305(2):232-63. PubMed ID: 1902848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoreceptor projection reveals heterogeneity of lamina cartridges in the visual system of the Japanese yellow swallowtail butterfly, Papilio xuthus.
    Takemura SY; Kinoshita M; Arikawa K
    J Comp Neurol; 2005 Mar; 483(3):341-50. PubMed ID: 15682398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The organization of the lamina ganglionaris of the hemipteran insects, Notonecta glauca, Corixa punctata and Gerris lacustris.
    Wolburg-Buchholz K
    Cell Tissue Res; 1979 Mar; 197(1):39-59. PubMed ID: 455401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The optic lobe of Drosophila melanogaster. II. Sorting of retinotopic pathways in the medulla.
    Bausenwein B; Dittrich AP; Fischbach KF
    Cell Tissue Res; 1992 Jan; 267(1):17-28. PubMed ID: 1735111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visual system of calliphorid flies: organization of optic glomeruli and their lobula complex efferents.
    Strausfeld NJ; Okamura JY
    J Comp Neurol; 2007 Jan; 500(1):166-88. PubMed ID: 17099891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel wide-field neuron with branches in the lamina of the Drosophila visual system expresses myoinhibitory peptide and may be associated with the clock.
    Kolodziejczyk A; Nässel DR
    Cell Tissue Res; 2011 Feb; 343(2):357-69. PubMed ID: 21174124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fine structure of the first optic ganglion (lamina) of the cockroach, Periplaneta americana.
    Ribi WA
    Tissue Cell; 1977; 9(1):57-72. PubMed ID: 898178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Daily rhythmic changes of cell size and shape in the first optic neuropil in Drosophila melanogaster.
    Pyza E; Meinertzhagen IA
    J Neurobiol; 1999 Jul; 40(1):77-88. PubMed ID: 10398073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sign-conserving amacrine neurons in the fly's external plexiform layer.
    Douglass JK; Strausfeld NJ
    Vis Neurosci; 2005; 22(3):345-58. PubMed ID: 16079009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of synaptic frequency: comparison of the effects of hypoinnervation with those of hyperinnervation in the fly's compound eye.
    Fröhlich A; Meinertzhagen IA
    J Neurobiol; 1987 Jul; 18(4):343-57. PubMed ID: 3612115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The second and third optic ganglia of the worker bee: Golgi studies of the neuronal elements in the medulla and lobula.
    Ribi WA; Scheel M
    Cell Tissue Res; 1981; 221(1):17-43. PubMed ID: 7032703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.