BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 8702561)

  • 1. In vitro reconstitution of transcriptional antitermination by the SacT and SacY proteins of Bacillus subtilis.
    Arnaud M; Débarbouillé M; Rapoport G; Saier MH; Reizer J
    J Biol Chem; 1996 Aug; 271(31):18966-72. PubMed ID: 8702561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity.
    Arnaud M; Vary P; Zagorec M; Klier A; Debarbouille M; Postma P; Rapoport G
    J Bacteriol; 1992 May; 174(10):3161-70. PubMed ID: 1577686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family.
    Aymerich S; Steinmetz M
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10410-4. PubMed ID: 1279678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A ribonucleic antiterminator sequence (RAT) and a distant palindrome are both involved in sucrose induction of the Bacillus subtilis sacXY regulatory operon.
    Tortosa P; Le Coq D
    Microbiology (Reading); 1995 Nov; 141 ( Pt 11)():2921-7. PubMed ID: 8535520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription of the Bacillus subtilis sacX and sacY genes, encoding regulators of sucrose metabolism, is both inducible by sucrose and controlled by the DegS-DegU signalling system.
    Crutz AM; Steinmetz M
    J Bacteriol; 1992 Oct; 174(19):6087-95. PubMed ID: 1400159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators.
    Debarbouille M; Arnaud M; Fouet A; Klier A; Rapoport G
    J Bacteriol; 1990 Jul; 172(7):3966-73. PubMed ID: 2163394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple phosphorylation of SacY, a Bacillus subtilis transcriptional antiterminator negatively controlled by the phosphotransferase system.
    Tortosa P; Aymerich S; Lindner C; Saier MH; Reizer J; Le Coq D
    J Biol Chem; 1997 Jul; 272(27):17230-7. PubMed ID: 9202047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA recognition by transcriptional antiterminators of the BglG/SacY family: mapping of SacY RNA binding site.
    Declerck N; Minh NL; Yang Y; Bloch V; Kochoyan M; Aymerich S
    J Mol Biol; 2002 Jun; 319(5):1035-48. PubMed ID: 12079345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The lac operon of Lactobacillus casei contains lacT, a gene coding for a protein of the Bg1G family of transcriptional antiterminators.
    Alpert CA; Siebers U
    J Bacteriol; 1997 Mar; 179(5):1555-62. PubMed ID: 9045813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [PO-independent termination of transcription of catabolite operons in Escherichia coli and Bacillus subtilis].
    Gershanovich VN
    Mol Gen Mikrobiol Virusol; 1999; (3):3-7. PubMed ID: 10495975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BglR protein, which belongs to the BglG family of transcriptional antiterminators, is involved in beta-glucoside utilization in Lactococcus lactis.
    Bardowski J; Ehrlich SD; Chopin A
    J Bacteriol; 1994 Sep; 176(18):5681-5. PubMed ID: 8083160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of histidine-dependent antitermination in Bacillus subtilis hut operon.
    Oda M; Kobayashi N; Kurusu Y; Fujita M
    Nucleic Acids Symp Ser; 2000; (44):5-6. PubMed ID: 12903241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sites of positive and negative regulation in the Bacillus subtilis antiterminators LicT and SacY.
    Tortosa P; Declerck N; Dutartre H; Lindner C; Deutscher J; Le Coq D
    Mol Microbiol; 2001 Sep; 41(6):1381-93. PubMed ID: 11580842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SacY, a transcriptional antiterminator from Bacillus subtilis, is regulated by phosphorylation in vivo.
    Idelson M; Amster-Choder O
    J Bacteriol; 1998 Feb; 180(3):660-6. PubMed ID: 9457872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic analysis of tRNA-directed transcription antitermination of the Bacillus subtilis glyQS gene in vitro.
    Grundy FJ; Henkin TM
    J Bacteriol; 2004 Aug; 186(16):5392-9. PubMed ID: 15292140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific interaction of the RNA-binding domain of the bacillus subtilis transcriptional antiterminator GlcT with its RNA target, RAT.
    Langbein I; Bachem S; Stülke J
    J Mol Biol; 1999 Nov; 293(4):795-805. PubMed ID: 10543968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis.
    Krüger S; Hecker M
    J Bacteriol; 1995 Oct; 177(19):5590-7. PubMed ID: 7559347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From genetic to structural characterization of a new class of RNA-binding domain within the SacY/BglG family of antiterminator proteins.
    Manival X; Yang Y; Strub MP; Kochoyan M; Steinmetz M; Aymerich S
    EMBO J; 1997 Aug; 16(16):5019-29. PubMed ID: 9305643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide sequence of the sacS locus of Bacillus subtilis reveals the presence of two regulatory genes.
    Zukowski MM; Miller L; Cosgwell P; Chen K; Aymerich S; Steinmetz M
    Gene; 1990 May; 90(1):153-5. PubMed ID: 2116367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog.
    Le Coq D; Lindner C; Krüger S; Steinmetz M; Stülke J
    J Bacteriol; 1995 Mar; 177(6):1527-35. PubMed ID: 7883710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.