BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 8702750)

  • 1. N-Ethylmaleimide-sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis.
    Banerjee A; Barry VA; DasGupta BR; Martin TF
    J Biol Chem; 1996 Aug; 271(34):20223-6. PubMed ID: 8702750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-dependent dissociation of synaptotagmin from synaptic SNARE complexes.
    Leveque C; Boudier JA; Takahashi M; Seagar M
    J Neurochem; 2000 Jan; 74(1):367-74. PubMed ID: 10617141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clostridial neurotoxins compromise the stability of a low energy SNARE complex mediating NSF activation of synaptic vesicle fusion.
    Pellegrini LL; O'Connor V; Lottspeich F; Betz H
    EMBO J; 1995 Oct; 14(19):4705-13. PubMed ID: 7588600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SNAP-25 is required for a late postdocking step in Ca2+-dependent exocytosis.
    Banerjee A; Kowalchyk JA; DasGupta BR; Martin TF
    J Biol Chem; 1996 Aug; 271(34):20227-30. PubMed ID: 8702751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion.
    Söllner T; Bennett MK; Whiteheart SW; Scheller RH; Rothman JE
    Cell; 1993 Nov; 75(3):409-18. PubMed ID: 8221884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NSF function in neurotransmitter release involves rearrangement of the SNARE complex downstream of synaptic vesicle docking.
    Tolar LA; Pallanck L
    J Neurosci; 1998 Dec; 18(24):10250-6. PubMed ID: 9852562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential phosphorylation of syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) isoforms.
    Risinger C; Bennett MK
    J Neurochem; 1999 Feb; 72(2):614-24. PubMed ID: 9930733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis.
    Zhang X; Kim-Miller MJ; Fukuda M; Kowalchyk JA; Martin TF
    Neuron; 2002 May; 34(4):599-611. PubMed ID: 12062043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of exocytosis through Ca2+/ATP-dependent binding of autophosphorylated Ca2+/calmodulin-activated protein kinase II to syntaxin 1A.
    Ohyama A; Hosaka K; Komiya Y; Akagawa K; Yamauchi E; Taniguchi H; Sasagawa N; Kumakura K; Mochida S; Yamauchi T; Igarashi M
    J Neurosci; 2002 May; 22(9):3342-51. PubMed ID: 11978810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes.
    Davis AF; Bai J; Fasshauer D; Wolowick MJ; Lewis JL; Chapman ER
    Neuron; 1999 Oct; 24(2):363-76. PubMed ID: 10571230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of SNAP receptors in rat adipose cell membrane fractions and in SNARE complexes co-immunoprecipitated with epitope-tagged N-ethylmaleimide-sensitive fusion protein.
    Timmers KI; Clark AE; Omatsu-Kanbe M; Whiteheart SW; Bennett MK; Holman GD; Cushman SW
    Biochem J; 1996 Dec; 320 ( Pt 2)(Pt 2):429-36. PubMed ID: 8973549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The C terminus of SNAP25 is essential for Ca(2+)-dependent binding of synaptotagmin to SNARE complexes.
    Gerona RR; Larsen EC; Kowalchyk JA; Martin TF
    J Biol Chem; 2000 Mar; 275(9):6328-36. PubMed ID: 10692432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fusion pore dynamics are regulated by synaptotagmin*t-SNARE interactions.
    Bai J; Wang CT; Richards DA; Jackson MB; Chapman ER
    Neuron; 2004 Mar; 41(6):929-42. PubMed ID: 15046725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+-dependent interaction of the growth-associated protein GAP-43 with the synaptic core complex.
    Haruta T; Takami N; Ohmura M; Misumi Y; Ikehara Y
    Biochem J; 1997 Jul; 325 ( Pt 2)(Pt 2):455-63. PubMed ID: 9230128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulated secretion in platelets: identification of elements of the platelet exocytosis machinery.
    Lemons PP; Chen D; Bernstein AM; Bennett MK; Whiteheart SW
    Blood; 1997 Aug; 90(4):1490-500. PubMed ID: 9269766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of alpha-soluble N-ethylmaleimide-sensitive fusion attachment protein in alveolar type II cells: implications in lung surfactant secretion.
    Abonyo BO; Wang P; Narasaraju TA; Rowan WH; McMillan DH; Zimmerman UJ; Liu L
    Am J Respir Cell Mol Biol; 2003 Sep; 29(3 Pt 1):273-82. PubMed ID: 12663329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion.
    Hu K; Carroll J; Fedorovich S; Rickman C; Sukhodub A; Davletov B
    Nature; 2002 Feb; 415(6872):646-50. PubMed ID: 11832947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. synaptotagmin mutants reveal essential functions for the C2B domain in Ca2+-triggered fusion and recycling of synaptic vesicles in vivo.
    Littleton JT; Bai J; Vyas B; Desai R; Baltus AE; Garment MB; Carlson SD; Ganetzky B; Chapman ER
    J Neurosci; 2001 Mar; 21(5):1421-33. PubMed ID: 11222632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic core complex of synaptobrevin, syntaxin, and SNAP25 forms high affinity alpha-SNAP binding site.
    McMahon HT; Südhof TC
    J Biol Chem; 1995 Feb; 270(5):2213-7. PubMed ID: 7836452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles.
    Otto H; Hanson PI; Jahn R
    Proc Natl Acad Sci U S A; 1997 Jun; 94(12):6197-201. PubMed ID: 9177194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.