These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8702784)

  • 21. Major oxidative products of cytosine, 5-hydroxycytosine and 5-hydroxyuracil, exhibit sequence context-dependent mispairing in vitro.
    Purmal AA; Kow YW; Wallace SS
    Nucleic Acids Res; 1994 Jan; 22(1):72-8. PubMed ID: 8127657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oligonucleotides labeled with single fluorophores as sensors for deoxynucleotide triphosphate binding by DNA polymerases.
    Nikiforov TT
    Anal Biochem; 2014 Jan; 444():60-6. PubMed ID: 24096197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of a vector containing a site-specific DNA double-strand break with 3'-phosphoglycolate termini and analysis of the products of end-joining in CV-1 cells.
    Bennett RA; Gu XY; Povirk LF
    Int J Radiat Biol; 1996 Dec; 70(6):623-36. PubMed ID: 8980659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I.
    Carver TE; Millar DP
    Biochemistry; 1998 Feb; 37(7):1898-904. PubMed ID: 9485315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate in vitro translesion synthesis by Escherichia coli DNA polymerase I (large fragment) on a site-specific, aminofluorene-modified oligonucleotide.
    Michaels ML; Reid TM; King CM; Romano LJ
    Carcinogenesis; 1991 Sep; 12(9):1641-6. PubMed ID: 1893522
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RecA interacts with Klenow and enhances fidelity of DNA synthesis in vitro.
    Karthikeyan G; Lakshmikant GS; Wagle MD; Krishnamoorthy G; Rao BJ
    J Mol Microbiol Biotechnol; 1999 Aug; 1(1):149-56. PubMed ID: 10941797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The fidelity of DNA synthesis catalyzed by derivatives of Escherichia coli DNA polymerase I.
    Bebenek K; Joyce CM; Fitzgerald MP; Kunkel TA
    J Biol Chem; 1990 Aug; 265(23):13878-87. PubMed ID: 2199444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of Escherichia coli DNA polymerase I with azidoDNA and fluorescent DNA probes: identification of protein-DNA contacts.
    Catalano CE; Allen DJ; Benkovic SJ
    Biochemistry; 1990 Apr; 29(15):3612-21. PubMed ID: 2187527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Melting of a DNA helix terminus within the active site of a DNA polymerase.
    Hochstrasser RA; Carver TE; Sowers LC; Millar DP
    Biochemistry; 1994 Oct; 33(39):11971-9. PubMed ID: 7918416
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exonuclease III (XthA) Enforces
    Nozaki S; Niki H
    J Bacteriol; 2019 Mar; 201(5):. PubMed ID: 30530516
    [No Abstract]   [Full Text] [Related]  

  • 31. Distinct complexes of DNA polymerase I (Klenow fragment) for base and sugar discrimination during nucleotide substrate selection.
    Garalde DR; Simon CA; Dahl JM; Wang H; Akeson M; Lieberman KR
    J Biol Chem; 2011 Apr; 286(16):14480-92. PubMed ID: 21362617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Primary products of break-induced recombination by Escherichia coli RecE pathway.
    Silberstein Z; Tzfati Y; Cohen A
    J Bacteriol; 1995 Apr; 177(7):1692-8. PubMed ID: 7896689
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A label-free assay of exonuclease activity using a pyrosequencing technique.
    Gührs KH; Groth M; Grosse F
    Anal Biochem; 2010 Oct; 405(1):11-8. PubMed ID: 20522331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of factors influencing strand bias in oligonucleotide-mediated recombination in Escherichia coli.
    Li XT; Costantino N; Lu LY; Liu DP; Watt RM; Cheah KS; Court DL; Huang JD
    Nucleic Acids Res; 2003 Nov; 31(22):6674-87. PubMed ID: 14602928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pol I DNA polymerases stimulate DNA end-joining by Escherichia coli DNA ligase.
    Yang Y; LiCata VJ
    Biochem Biophys Res Commun; 2018 Feb; 497(1):13-18. PubMed ID: 29409896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The affinity of the Klenow fragment of E. coli DNA-polymerase 1 to primers containing bases noncomplementary to the template and hairpin-like elements.
    Ljach MV; Kolocheva TI; Gorn VV; Levina AS; Nevinsky GA
    FEBS Lett; 1992 Mar; 300(1):18-20. PubMed ID: 1547884
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro repair of synthetic ionizing radiation-induced multiply damaged DNA sites.
    Harrison L; Hatahet Z; Wallace SS
    J Mol Biol; 1999 Jul; 290(3):667-84. PubMed ID: 10395822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The joining of blunt DNA ends to 3'-protruding single strands in Escherichia coli.
    King J; Fairley C; Morgan W
    Nucleic Acids Res; 1998 Apr; 26(7):1749-54. PubMed ID: 9512548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proofreading DNA: recognition of aberrant DNA termini by the Klenow fragment of DNA polymerase I.
    Carver TE; Hochstrasser RA; Millar DP
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10670-4. PubMed ID: 7938011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fidelity of mispair formation and mispair extension is dependent on the interaction between the minor groove of the primer terminus and Arg668 of DNA polymerase I of Escherichia coli.
    McCain MD; Meyer AS; Schultz SS; Glekas A; Spratt TE
    Biochemistry; 2005 Apr; 44(15):5647-59. PubMed ID: 15823023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.