BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 8702805)

  • 1. Characterization of the reductase domain of rat neuronal nitric oxide synthase generated in the methylotrophic yeast Pichia pastoris. Calmodulin response is complete within the reductase domain itself.
    Gachhui R; Presta A; Bentley DF; Abu-Soud HM; McArthur R; Brudvig G; Ghosh DK; Stuehr DJ
    J Biol Chem; 1996 Aug; 271(34):20594-602. PubMed ID: 8702805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of electron transfer and catalysis in neuronal nitric-oxide synthase (nNOS) by a hinge connecting its FMN and FAD-NADPH domains.
    Haque MM; Fadlalla MA; Aulak KS; Ghosh A; Durra D; Stuehr DJ
    J Biol Chem; 2012 Aug; 287(36):30105-16. PubMed ID: 22722929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping interactions of calmodulin and neuronal NO synthase by crosslinking and mass spectrometry.
    Felker D; Lee K; Pospiech TH; Morishima Y; Zhang H; Lau M; Southworth DR; Osawa Y
    J Biol Chem; 2024 Jan; 300(1):105464. PubMed ID: 37979917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADPH-cytochrome P450 oxidoreductase: prototypic member of the diflavin reductase family.
    Iyanagi T; Xia C; Kim JJ
    Arch Biochem Biophys; 2012 Dec; 528(1):72-89. PubMed ID: 22982532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoregulation and Autoinhibition of the Main NO Synthase Isoforms (Brief Review).
    Popova NA; Soodaeva SK; Klimanov IA; Misharin VM; Temnov AA
    Sovrem Tekhnologii Med; 2023; 15(3):53-59. PubMed ID: 38435476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, synthesis, and characterization of a photoactivatable flavocytochrome molecular maquette.
    Sharp RE; Moser CC; Rabanal F; Dutton PL
    Proc Natl Acad Sci U S A; 1998 Sep; 95(18):10465-70. PubMed ID: 9724726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational states and fluctuations in endothelial nitric oxide synthase under calmodulin regulation.
    He Y; Haque MM; Stuehr DJ; Lu HP
    Biophys J; 2021 Dec; 120(23):5196-5206. PubMed ID: 34748763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cross-domain charge interaction governs the activity of NO synthase.
    Haque MM; Tejero J; Bayachou M; Kenney CT; Stuehr DJ
    J Biol Chem; 2018 Mar; 293(12):4545-4554. PubMed ID: 29414777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restricting the conformational freedom of the neuronal nitric-oxide synthase flavoprotein domain reveals impact on electron transfer and catalysis.
    Dai Y; Haque MM; Stuehr DJ
    J Biol Chem; 2017 Apr; 292(16):6753-6764. PubMed ID: 28232486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A perspective on conformational control of electron transfer in nitric oxide synthases.
    Hedison TM; Hay S; Scrutton NS
    Nitric Oxide; 2017 Feb; 63():61-67. PubMed ID: 27619338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation Controls Endothelial Nitric-oxide Synthase by Regulating Its Conformational Dynamics.
    Haque MM; Ray SS; Stuehr DJ
    J Biol Chem; 2016 Oct; 291(44):23047-23057. PubMed ID: 27613870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule spectroscopy reveals how calmodulin activates NO synthase by controlling its conformational fluctuation dynamics.
    He Y; Haque MM; Stuehr DJ; Lu HP
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11835-40. PubMed ID: 26311846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular architecture of mammalian nitric oxide synthases.
    Campbell MG; Smith BC; Potter CS; Carragher B; Marletta MA
    Proc Natl Acad Sci U S A; 2014 Sep; 111(35):E3614-23. PubMed ID: 25125509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architecture of the nitric-oxide synthase holoenzyme reveals large conformational changes and a calmodulin-driven release of the FMN domain.
    Yokom AL; Morishima Y; Lau M; Su M; Glukhova A; Osawa Y; Southworth DR
    J Biol Chem; 2014 Jun; 289(24):16855-65. PubMed ID: 24737326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heme enzyme structure and function.
    Poulos TL
    Chem Rev; 2014 Apr; 114(7):3919-62. PubMed ID: 24400737
    [No Abstract]   [Full Text] [Related]  

  • 16. Dissecting regulation mechanism of the FMN to heme interdomain electron transfer in nitric oxide synthases.
    Feng C; Chen L; Li W; Elmore BO; Fan W; Sun X
    J Inorg Biochem; 2014 Jan; 130():130-40. PubMed ID: 24084585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide synthase domain interfaces regulate electron transfer and calmodulin activation.
    Smith BC; Underbakke ES; Kulp DW; Schief WR; Marletta MA
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):E3577-86. PubMed ID: 24003111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic characterization of five key kinetic parameters that define neuronal nitric oxide synthase catalysis.
    Haque MM; Tejero J; Bayachou M; Wang ZQ; Fadlalla M; Stuehr DJ
    FEBS J; 2013 Sep; 280(18):4439-53. PubMed ID: 23789902
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.