BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 8702805)

  • 1. Characterization of the reductase domain of rat neuronal nitric oxide synthase generated in the methylotrophic yeast Pichia pastoris. Calmodulin response is complete within the reductase domain itself.
    Gachhui R; Presta A; Bentley DF; Abu-Soud HM; McArthur R; Brudvig G; Ghosh DK; Stuehr DJ
    J Biol Chem; 1996 Aug; 271(34):20594-602. PubMed ID: 8702805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron transfer is activated by calmodulin in the flavin domain of human neuronal nitric oxide synthase.
    Guan ZW; Iyanagi T
    Arch Biochem Biophys; 2003 Apr; 412(1):65-76. PubMed ID: 12646269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stopped-flow kinetic studies of electron transfer in the reductase domain of neuronal nitric oxide synthase: re-evaluation of the kinetic mechanism reveals new enzyme intermediates and variation with cytochrome P450 reductase.
    Knight K; Scrutton NS
    Biochem J; 2002 Oct; 367(Pt 1):19-30. PubMed ID: 12079493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calmodulin activates intramolecular electron transfer between the two flavins of neuronal nitric oxide synthase flavin domain.
    Matsuda H; Iyanagi T
    Biochim Biophys Acta; 1999 Dec; 1473(2-3):345-55. PubMed ID: 10594372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EPR spectroscopic characterization of neuronal NO synthase.
    Galli C; MacArthur R; Abu-Soud HM; Clark P; Steuhr DJ; Brudvig GW
    Biochemistry; 1996 Feb; 35(8):2804-10. PubMed ID: 8611587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-electron reduction of quinones by the neuronal nitric-oxide synthase reductase domain.
    Matsuda H; Kimura S; Iyanagi T
    Biochim Biophys Acta; 2000 Jul; 1459(1):106-16. PubMed ID: 10924903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chimeric enzymes of cytochrome P450 oxidoreductase and neuronal nitric-oxide synthase reductase domain reveal structural and functional differences.
    Roman LJ; McLain J; Masters BS
    J Biol Chem; 2003 Jul; 278(28):25700-7. PubMed ID: 12730215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of C415 mutants of neuronal nitric oxide synthase.
    Richards MK; Clague MJ; Marletta MA
    Biochemistry; 1996 Jun; 35(24):7772-80. PubMed ID: 8672477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase.
    Yamamoto K; Kimura S; Shiro Y; Iyanagi T
    Arch Biochem Biophys; 2005 Aug; 440(1):65-78. PubMed ID: 16009330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calmodulin activates electron transfer through neuronal nitric-oxide synthase reductase domain by releasing an NADPH-dependent conformational lock.
    Craig DH; Chapman SK; Daff S
    J Biol Chem; 2002 Sep; 277(37):33987-94. PubMed ID: 12089147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic studies on the intramolecular one-electron transfer between the two flavins in the human neuronal nitric-oxide synthase and inducible nitric-oxide synthase flavin domains.
    Guan ZW; Kamatani D; Kimura S; Iyanagi T
    J Biol Chem; 2003 Aug; 278(33):30859-68. PubMed ID: 12777376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentiometric analysis of the flavin cofactors of neuronal nitric oxide synthase.
    Noble MA; Munro AW; Rivers SL; Robledo L; Daff SN; Yellowlees LJ; Shimizu T; Sagami I; Guillemette JG; Chapman SK
    Biochemistry; 1999 Dec; 38(50):16413-8. PubMed ID: 10600101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of reductase domain cluster 1 acidic residues in neuronal nitric-oxide synthase. Characterization of the FMN-FREE enzyme.
    Adak S; Ghosh S; Abu-Soud HM; Stuehr DJ
    J Biol Chem; 1999 Aug; 274(32):22313-20. PubMed ID: 10428800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of flavin fluorescence dynamics in neuronal nitric oxide synthase to cofactor-induced conformational changes and dimerization.
    Brunner K; Tortschanoff A; Hemmens B; Andrew PJ; Mayer B; Kungl AJ
    Biochemistry; 1998 Dec; 37(50):17545-53. PubMed ID: 9860870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calmodulin activates intersubunit electron transfer in the neuronal nitric-oxide synthase dimer.
    Panda K; Ghosh S; Stuehr DJ
    J Biol Chem; 2001 Jun; 276(26):23349-56. PubMed ID: 11325964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox properties of the isolated flavin mononucleotide- and flavin adenine dinucleotide-binding domains of neuronal nitric oxide synthase.
    Garnaud PE; Koetsier M; Ost TW; Daff S
    Biochemistry; 2004 Aug; 43(34):11035-44. PubMed ID: 15323562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of electron transfer in neuronal NO synthase.
    Daff S; Noble MA; Craig DH; Rivers SL; Chapman SK; Munro AW; Fujiwara S; Rozhkova E; Sagami I; Shimizu T
    Biochem Soc Trans; 2001 May; 29(Pt 2):147-52. PubMed ID: 11356143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 42-amino acid insert in the FMN domain of neuronal nitric-oxide synthase exerts control over Ca(2+)/calmodulin-dependent electron transfer.
    Daff S; Sagami I; Shimizu T
    J Biol Chem; 1999 Oct; 274(43):30589-95. PubMed ID: 10521442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the electron transfer properties of neuronal nitric-oxide synthase by reversal of the FMN redox potential.
    Li H; Das A; Sibhatu H; Jamal J; Sligar SG; Poulos TL
    J Biol Chem; 2008 Dec; 283(50):34762-72. PubMed ID: 18852262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The high-potential flavin and heme of nitric oxide synthase are not magnetically linked: implications for electron transfer.
    Perry JM; Moon N; Zhao Y; Dunham WR; Marletta MA
    Chem Biol; 1998 Jul; 5(7):355-64. PubMed ID: 9662510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.