BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 8702865)

  • 1. Inhibitor probes of the quinone binding sites of mammalian complex II and Escherichia coli fumarate reductase.
    Yankovskaya V; Sablin SO; Ramsay RR; Singer TP; Ackrell BA; Cecchini G; Miyoshi H
    J Biol Chem; 1996 Aug; 271(35):21020-4. PubMed ID: 8702865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of catalytic activity and inhibitors of quinone reactions of succinate dehydrogenase (Succinate-ubiquinone oxidoreductase) and fumarate reductase (Menaquinol-fumarate oxidoreductase) from Escherichia coli.
    Maklashina E; Cecchini G
    Arch Biochem Biophys; 1999 Sep; 369(2):223-32. PubMed ID: 10486141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the structures of the quinone-binding sites in beef heart mitochondria.
    Tan AK; Ramsay RR; Singer TP; Miyoshi H
    J Biol Chem; 1993 Sep; 268(26):19328-33. PubMed ID: 8396133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c oxidoreductases probed by sensitivity to quinone-related inhibitors.
    Yamashita A; Miyoshi H; Hatano T; Iwamura H
    J Biochem; 1996 Aug; 120(2):377-84. PubMed ID: 8889824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Escherichia coli mutant quinol:fumarate reductase contains an EPR-detectable semiquinone stabilized at the proximal quinone-binding site.
    Hägerhäll C; Magnitsky S; Sled VD; Schröder I; Gunsalus RP; Cecchini G; Ohnishi T
    J Biol Chem; 1999 Sep; 274(37):26157-64. PubMed ID: 10473567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The carboxin-binding site on Paracoccus denitrificans succinate:quinone reductase identified by mutations.
    Matsson M; Hederstedt L
    J Bioenerg Biomembr; 2001 Apr; 33(2):99-105. PubMed ID: 11456223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. New assay system and overall properties of the reaction.
    Grivennikova VG; Gavrikova EV; Timoshin AA; Vinogradov AD
    Biochim Biophys Acta; 1993 Jan; 1140(3):282-92. PubMed ID: 8417779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The quinone-binding site in succinate-ubiquinone reductase from Escherichia coli. Quinone-binding domain and amino acid residues involved in quinone binding.
    Yang X; Yu L; He D; Yu CA
    J Biol Chem; 1998 Nov; 273(48):31916-23. PubMed ID: 9822661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retention of heme in axial ligand mutants of succinate-ubiquinone xxidoreductase (complex II) from Escherichia coli.
    Maklashina E; Rothery RA; Weiner JH; Cecchini G
    J Biol Chem; 2001 Jun; 276(22):18968-76. PubMed ID: 11259408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escherichia coli fumarate reductase frdC and frdD mutants. Identification of amino acid residues involved in catalytic activity with quinones.
    Westenberg DJ; Gunsalus RP; Ackrell BA; Sices H; Cecchini G
    J Biol Chem; 1993 Jan; 268(2):815-22. PubMed ID: 8419359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic inactivation of fumarate reductase from Escherichia coli by mutation of the [3Fe-4S]-quinone binding domain.
    Cecchini G; Sices H; Schröder I; Gunsalus RP
    J Bacteriol; 1995 Aug; 177(16):4587-92. PubMed ID: 7642483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Quinone-binding sites of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase.
    Oyedotun KS; Lemire BD
    J Biol Chem; 2001 May; 276(20):16936-43. PubMed ID: 11279023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fumarate reductase and succinate oxidase activity of Escherichia coli complex II homologs are perturbed differently by mutation of the flavin binding domain.
    Maklashina E; Iverson TM; Sher Y; Kotlyar V; Andréll J; Mirza O; Hudson JM; Armstrong FA; Rothery RA; Weiner JH; Cecchini G
    J Biol Chem; 2006 Apr; 281(16):11357-65. PubMed ID: 16484232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architecture of succinate dehydrogenase and reactive oxygen species generation.
    Yankovskaya V; Horsefield R; Törnroth S; Luna-Chavez C; Miyoshi H; Léger C; Byrne B; Cecchini G; Iwata S
    Science; 2003 Jan; 299(5607):700-4. PubMed ID: 12560550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Malate oxidation by mitochondrial succinate:ubiquinone-reductase].
    Belikova IuO; Kotliar AB
    Biokhimiia; 1988 Apr; 53(4):668-76. PubMed ID: 3395646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Succinate: quinone oxidoreductases: new insights from X-ray crystal structures.
    Lancaster CR; Kröger A
    Biochim Biophys Acta; 2000 Aug; 1459(2-3):422-31. PubMed ID: 11004459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives.
    Gu LQ; Yu L; Yu CA
    Biochim Biophys Acta; 1990 Feb; 1015(3):482-92. PubMed ID: 2154255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing your complexes: structure of the quinol-fumarate reductase respiratory complex.
    Iverson TM; Luna-Chavez C; Schröder I; Cecchini G; Rees DC
    Curr Opin Struct Biol; 2000 Aug; 10(4):448-55. PubMed ID: 10981634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase).
    Miyadera H; Shiomi K; Ui H; Yamaguchi Y; Masuma R; Tomoda H; Miyoshi H; Osanai A; Kita K; Omura S
    Proc Natl Acad Sci U S A; 2003 Jan; 100(2):473-7. PubMed ID: 12515859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in protonation of ubiquinone and menaquinone in fumarate reductase from Escherichia coli.
    Maklashina E; Hellwig P; Rothery RA; Kotlyar V; Sher Y; Weiner JH; Cecchini G
    J Biol Chem; 2006 Sep; 281(36):26655-64. PubMed ID: 16829675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.