These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 8702968)

  • 1. Identification of a putative effector for Cdc42Hs with high sequence similarity to the RasGAP-related protein IQGAP1 and a Cdc42Hs binding partner with similarity to IQGAP2.
    McCallum SJ; Wu WJ; Cerione RA
    J Biol Chem; 1996 Sep; 271(36):21732-7. PubMed ID: 8702968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases.
    Brill S; Li S; Lyman CW; Church DM; Wasmuth JJ; Weissbach L; Bernards A; Snijders AJ
    Mol Cell Biol; 1996 Sep; 16(9):4869-78. PubMed ID: 8756646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs.
    Hart MJ; Callow MG; Souza B; Polakis P
    EMBO J; 1996 Jun; 15(12):2997-3005. PubMed ID: 8670801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the interactions between the small GTPase Cdc42 and its GTPase-activating proteins and putative effectors. Comparison of kinetic properties of Cdc42 binding to the Cdc42-interactive domains.
    Zhang B; Wang ZX; Zheng Y
    J Biol Chem; 1997 Aug; 272(35):21999-2007. PubMed ID: 9268338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of a fluorescence spectroscopic readout to characterize the interactions of Cdc42Hs with its target/effector, mPAK-3.
    Leonard DA; Satoskar RS; Wu WJ; Bagrodia S; Cerione RA; Manor D
    Biochemistry; 1997 Feb; 36(5):1173-80. PubMed ID: 9033409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of cross-linking of actin filament by IQGAP1, a target for Cdc42.
    Fukata M; Kuroda S; Fujii K; Nakamura T; Shoji I; Matsuura Y; Okawa K; Iwamatsu A; Kikuchi A; Kaibuchi K
    J Biol Chem; 1997 Nov; 272(47):29579-83. PubMed ID: 9368021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of phosphoinositide 3-kinase activity by Cdc42Hs binding to p85.
    Zheng Y; Bagrodia S; Cerione RA
    J Biol Chem; 1994 Jul; 269(29):18727-30. PubMed ID: 8034624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of Rac1 with GTPase-activating proteins and putative effectors. A comparison with Cdc42 and RhoA.
    Zhang B; Chernoff J; Zheng Y
    J Biol Chem; 1998 Apr; 273(15):8776-82. PubMed ID: 9535855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between Cdc42Hs and RhoGDI is mediated through the Rho insert region.
    Wu WJ; Leonard DA; A-Cerione R; Manor D
    J Biol Chem; 1997 Oct; 272(42):26153-8. PubMed ID: 9334181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1.
    Kuroda S; Fukata M; Kobayashi K; Nakafuku M; Nomura N; Iwamatsu A; Kaibuchi K
    J Biol Chem; 1996 Sep; 271(38):23363-7. PubMed ID: 8798539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bridging Ral GTPase to Rho pathways. RLIP76, a Ral effector with CDC42/Rac GTPase-activating protein activity.
    Jullien-Flores V; Dorseuil O; Romero F; Letourneur F; Saragosti S; Berger R; Tavitian A; Gacon G; Camonis JH
    J Biol Chem; 1995 Sep; 270(38):22473-7. PubMed ID: 7673236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural requirements for PAK activation by Rac GTPases.
    Knaus UG; Wang Y; Reilly AM; Warnock D; Jackson JH
    J Biol Chem; 1998 Aug; 273(34):21512-8. PubMed ID: 9705280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20.
    Martin GA; Bollag G; McCormick F; Abo A
    EMBO J; 1995 May; 14(9):1970-8. PubMed ID: 7744004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The IQGAP1-Rac1 and IQGAP1-Cdc42 interactions: interfaces differ between the complexes.
    Owen D; Campbell LJ; Littlefield K; Evetts KA; Li Z; Sacks DB; Lowe PN; Mott HR
    J Biol Chem; 2008 Jan; 283(3):1692-1704. PubMed ID: 17984089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of IQGAP1 modulates its binding to Cdc42, revealing a new type of rho-GTPase regulator.
    Grohmanova K; Schlaepfer D; Hess D; Gutierrez P; Beck M; Kroschewski R
    J Biol Chem; 2004 Nov; 279(47):48495-504. PubMed ID: 15355962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Ras-related GTPase Rac1 binds tubulin.
    Best A; Ahmed S; Kozma R; Lim L
    J Biol Chem; 1996 Feb; 271(7):3756-62. PubMed ID: 8631991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling the molecular mechanism of interactions of the Rho GTPases Cdc42 and Rac1 with the scaffolding protein IQGAP2.
    Ozdemir ES; Jang H; Gursoy A; Keskin O; Li Z; Sacks DB; Nussinov R
    J Biol Chem; 2018 Mar; 293(10):3685-3699. PubMed ID: 29358323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CDC42-IQGAP Interactions Scrutinized: New Insights into the Binding Properties of the GAP-Related Domain.
    Mosaddeghzadeh N; Pudewell S; Bazgir F; Kazemein Jasemi NS; Krumbach OHF; Gremer L; Willbold D; Dvorsky R; Ahmadian MR
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the human neutrophil NADPH oxidase by rho-related G-proteins.
    Kwong CH; Malech HL; Rotrosen D; Leto TL
    Biochemistry; 1993 Jun; 32(21):5711-7. PubMed ID: 8504089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical comparisons of the Saccharomyces cerevisiae Bem2 and Bem3 proteins. Delineation of a limit Cdc42 GTPase-activating protein domain.
    Zheng Y; Hart MJ; Shinjo K; Evans T; Bender A; Cerione RA
    J Biol Chem; 1993 Nov; 268(33):24629-34. PubMed ID: 8227021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.