These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 8703407)

  • 1. Mechanical basis of cell shape: investigations with the scanning acoustic microscope.
    Bereiter-Hahn J; Karl I; Lüers H; Vöth M
    Biochem Cell Biol; 1995; 73(7-8):337-48. PubMed ID: 8703407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell contraction caused by microtubule disruption is accompanied by shape changes and an increased elasticity measured by scanning acoustic microscopy.
    Karl I; Bereiter-Hahn J
    Cell Biochem Biophys; 1998; 29(3):225-41. PubMed ID: 9868580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic microscopy of cultured cells. Distribution of forces and cytoskeletal elements.
    Lüers H; Hillmann K; Litniewski J; Bereiter-Hahn J
    Cell Biophys; 1991 Jun; 18(3):279-93. PubMed ID: 1726537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular tension fields and mechanical resistance of the lamella front related to the direction of locomotion.
    Bereiter-Hahn J; Lüers H
    Cell Biochem Biophys; 1998; 29(3):243-62. PubMed ID: 9868581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of human umbilical vein endothelial cells by acoustic microscopy.
    Saijo Y; Sasaki H; Sato M; Nitta S; Tanaka M
    Ultrasonics; 2000 Mar; 38(1-8):396-9. PubMed ID: 10829695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cytoplasm of living cells behaves as a poroelastic material.
    Moeendarbary E; Valon L; Fritzsche M; Harris AR; Moulding DA; Thrasher AJ; Stride E; Mahadevan L; Charras GT
    Nat Mater; 2013 Mar; 12(3):253-61. PubMed ID: 23291707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of the nucleus to the mechanical properties of endothelial cells.
    Caille N; Thoumine O; Tardy Y; Meister JJ
    J Biomech; 2002 Feb; 35(2):177-87. PubMed ID: 11784536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton.
    Satcher RL; Dewey CF
    Biophys J; 1996 Jul; 71(1):109-18. PubMed ID: 8804594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics.
    Kumar S; Maxwell IZ; Heisterkamp A; Polte TR; Lele TP; Salanga M; Mazur E; Ingber DE
    Biophys J; 2006 May; 90(10):3762-73. PubMed ID: 16500961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force propagation and force generation in cells.
    Jonas O; Duschl C
    Cytoskeleton (Hoboken); 2010 Sep; 67(9):555-63. PubMed ID: 20607861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of cellular elastic properties by acoustic microscopy.
    Hildebrand JA; Rugar D
    J Microsc; 1984 Jun; 134(Pt 3):245-60. PubMed ID: 6748059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell property determination from the acoustic microscope generated voltage versus frequency curves.
    Kundu T; Bereiter-Hahn J; Karl I
    Biophys J; 2000 May; 78(5):2270-9. PubMed ID: 10777725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of cyclin D1, p27(Kip1), and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension.
    Huang S; Chen CS; Ingber DE
    Mol Biol Cell; 1998 Nov; 9(11):3179-93. PubMed ID: 9802905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtubule organization in three-dimensional confined geometries: evaluating the role of elasticity through a combined in vitro and modeling approach.
    Cosentino Lagomarsino M; Tanase C; Vos JW; Emons AM; Mulder BM; Dogterom M
    Biophys J; 2007 Feb; 92(3):1046-57. PubMed ID: 17098802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress.
    Sato M; Nagayama K; Kataoka N; Sasaki M; Hane K
    J Biomech; 2000 Jan; 33(1):127-35. PubMed ID: 10609525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Architecture of tissue cells. The structural basis which determines shape and locomotion of cells.
    Bereiter-Hahn J
    Acta Biotheor; 1985; 34(2-4):139-48. PubMed ID: 3933229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells.
    Mathur AB; Truskey GA; Reichert WM
    Biophys J; 2000 Apr; 78(4):1725-35. PubMed ID: 10733955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape and volume of living aldosterone-sensitive cells imaged with the atomic force microscope.
    Schneider SW; Matzke R; Radmacher M; Oberleithner H
    Methods Mol Biol; 2004; 242():255-79. PubMed ID: 14578527
    [No Abstract]   [Full Text] [Related]  

  • 19. Cellular motility in vitro as revealed by scanning acoustic microscopy depends on cell-cell contacts.
    Zoller J; Brändle K; Bereiter-Hahn J
    Cell Tissue Res; 1997 Oct; 290(1):43-50. PubMed ID: 9377641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-level finite element studies of viscous cells in planar aggregates.
    Chen HH; Brodland GW
    J Biomech Eng; 2000 Aug; 122(4):394-401. PubMed ID: 11036563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.