These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8703508)

  • 1. Adaptation to life at micromolar nutrient levels: the regulation of Escherichia coli glucose transport by endoinduction and cAMP.
    Ferenci T
    FEMS Microbiol Rev; 1996 Jul; 18(4):301-17. PubMed ID: 8703508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Between feast and famine: endogenous inducer synthesis in the adaptation of Escherichia coli to growth with limiting carbohydrates.
    Death A; Ferenci T
    J Bacteriol; 1994 Aug; 176(16):5101-7. PubMed ID: 8051023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential expression of mal genes under cAMP and endogenous inducer control in nutrient-stressed Escherichia coli.
    Notley L; Ferenci T
    Mol Microbiol; 1995 Apr; 16(1):121-9. PubMed ID: 7651130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of RpoS-dependent functions in glucose-limited continuous culture: what level of nutrient limitation induces the stationary phase of Escherichia coli?
    Notley L; Ferenci T
    J Bacteriol; 1996 Mar; 178(5):1465-8. PubMed ID: 8631726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The multifactorial influences of RpoS, Mlc and cAMP on ptsG expression under glucose-limited and anaerobic conditions.
    Seeto S; Notley-McRobb L; Ferenci T
    Res Microbiol; 2004 Apr; 155(3):211-5. PubMed ID: 15059634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Derepression of LamB protein facilitates outer membrane permeation of carbohydrates into Escherichia coli under conditions of nutrient stress.
    Death A; Notley L; Ferenci T
    J Bacteriol; 1993 Mar; 175(5):1475-83. PubMed ID: 8444809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose transport in Escherichia coli mutant strains with defects in sugar transport systems.
    Steinsiek S; Bettenbrock K
    J Bacteriol; 2012 Nov; 194(21):5897-908. PubMed ID: 22923596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational adaptation of Escherichia coli to glucose limitation involves distinct evolutionary pathways in aerobic and oxygen-limited environments.
    Manch K; Notley-McRobb L; Ferenci T
    Genetics; 1999 Sep; 153(1):5-12. PubMed ID: 10471695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of the binding-protein-dependent Mgl system to the transport of glucose in Escherichia coli growing on low sugar concentrations.
    Death A; Ferenci T
    Res Microbiol; 1993 Sep; 144(7):529-37. PubMed ID: 8310178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of cyclic-AMP-dependent protein kinase in catabolite inactivation of the glucose and galactose transporters in Saccharomyces cerevisiae.
    Ramos J; Cirillo VP
    J Bacteriol; 1989 Jun; 171(6):3545-8. PubMed ID: 2542229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical model of the lac operon: inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose.
    Wong P; Gladney S; Keasling JD
    Biotechnol Prog; 1997; 13(2):132-43. PubMed ID: 9104037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the phosphotransferase system in Escherichia coli strains deficient in hexose phosphate transport.
    Dumay V; Crasnier M
    FEMS Microbiol Lett; 1994 Feb; 116(2):209-14. PubMed ID: 8150265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between external glucose concentration and cAMP levels inside Escherichia coli: implications for models of phosphotransferase-mediated regulation of adenylate cyclase.
    Notley-McRobb L; Death A; Ferenci T
    Microbiology (Reading); 1997 Jun; 143 ( Pt 6)():1909-1918. PubMed ID: 9202467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 'Growth of bacterial cultures' 50 years on: towards an uncertainty principle instead of constants in bacterial growth kinetics.
    Ferenci T
    Res Microbiol; 1999 Sep; 150(7):431-8. PubMed ID: 10540906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential regulation of glucose transport activity in yeast by specific cAMP signatures.
    Bermejo C; Haerizadeh F; Sadoine MS; Chermak D; Frommer WB
    Biochem J; 2013 Jun; 452(3):489-97. PubMed ID: 23495665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12.
    Bettenbrock K; Sauter T; Jahreis K; Kremling A; Lengeler JW; Gilles ED
    J Bacteriol; 2007 Oct; 189(19):6891-900. PubMed ID: 17675376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of sugar-mediated catabolite repression of the propionate catabolic genes in Escherichia coli.
    Park JM; Vinuselvi P; Lee SK
    Gene; 2012 Aug; 504(1):116-21. PubMed ID: 22579471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short- and long-term changes in proteome composition and kinetic properties in a culture of Escherichia coli during transition from glucose-excess to glucose-limited growth conditions in continuous culture and vice versa.
    Wick LM; Quadroni M; Egli T
    Environ Microbiol; 2001 Sep; 3(9):588-99. PubMed ID: 11683869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding-protein-dependent sugar transport by Agrobacterium radiobacter and A. tumefaciens grown in continuous culture.
    Cornish A; Greenwood JA; Jones CW
    J Gen Microbiol; 1989 Nov; 135(11):3001-13. PubMed ID: 2614377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli.
    Kadner RJ; Murphy GP; Stephens CM
    J Gen Microbiol; 1992 Oct; 138(10):2007-14. PubMed ID: 1479338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.