These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8703508)

  • 41. Elevated Expression of GlpT and UhpT via FNR Activation Contributes to Increased Fosfomycin Susceptibility in Escherichia coli under Anaerobic Conditions.
    Kurabayashi K; Tanimoto K; Fueki S; Tomita H; Hirakawa H
    Antimicrob Agents Chemother; 2015 Oct; 59(10):6352-60. PubMed ID: 26248376
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hierarchy of non-glucose sugars in Escherichia coli.
    Aidelberg G; Towbin BD; Rothschild D; Dekel E; Bren A; Alon U
    BMC Syst Biol; 2014 Dec; 8():133. PubMed ID: 25539838
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease.
    Flores N; Leal L; Sigala JC; de Anda R; Escalante A; Martínez A; Ramírez OT; Gosset G; Bolivar F
    J Mol Microbiol Biotechnol; 2007; 13(1-3):105-16. PubMed ID: 17693718
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protein kinase A, TOR, and glucose transport control the response to nutrient repletion in Saccharomyces cerevisiae.
    Slattery MG; Liko D; Heideman W
    Eukaryot Cell; 2008 Feb; 7(2):358-67. PubMed ID: 18156291
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Regulation of beta-galactosidase synthesis in Escherichia coli by exogenous cyclic 3',5'-adenosine monophosphate].
    Kaliuzhnaia VM; Korobov VP
    Mikrobiologiia; 1991; 60(1):65-70. PubMed ID: 1654499
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Mechanism of action of glucose on L-asparaginase synthesis by Escherichia coli bacteria].
    Garaev MM; Golub EI
    Mikrobiologiia; 1977; 46(3):433-9. PubMed ID: 197380
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proteome analysis to assess physiological changes in Escherichia coli grown under glucose-limited fed-batch conditions.
    Raman B; Nandakumar MP; Muthuvijayan V; Marten MR
    Biotechnol Bioeng; 2005 Nov; 92(3):384-92. PubMed ID: 16180237
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Global gene expression in Escherichia coli K-12 during short-term and long-term adaptation to glucose-limited continuous culture conditions.
    Franchini AG; Egli T
    Microbiology (Reading); 2006 Jul; 152(Pt 7):2111-2127. PubMed ID: 16804185
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Divergence and redundancy of transport and metabolic rate-yield strategies in a single Escherichia coli population.
    Maharjan RP; Seeto S; Ferenci T
    J Bacteriol; 2007 Mar; 189(6):2350-8. PubMed ID: 17158684
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification and characterization of the glucose dual-affinity transport system in
    Wang B; Li J; Gao J; Cai P; Han X; Tian C
    Biotechnol Biofuels; 2017; 10():17. PubMed ID: 28115989
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Escherichia coli die-out from normal soil as related to nutrient availability and the indigenous microflora.
    Klein DA; Casida LE
    Can J Microbiol; 1967 Nov; 13(11):1461-70. PubMed ID: 4863488
    [No Abstract]   [Full Text] [Related]  

  • 52. Timing of gene transcription in the galactose utilization system of Escherichia coli.
    Horváth P; Hunziker A; Erdossy J; Krishna S; Semsey S
    J Biol Chem; 2010 Dec; 285(49):38062-8. PubMed ID: 20923764
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Glucose-induced acid tolerance appearing at neutral pH in log-phase Escherichia coli and its reversal by cyclic AMP.
    Rowbury RJ; Goodson M
    J Appl Microbiol; 1998 Sep; 85(3):615-20. PubMed ID: 9750291
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glucose transport as rate-limiting step in the growth of Escherichia coli on glucose.
    Herbert D; Kornberg HL
    Biochem J; 1976 May; 156(2):477-80. PubMed ID: 782451
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of the capability of ultra-highly diluted glucose to increase glucose uptake in arsenite-stressed bacteria Escherichia coli.
    Khuda-Bukhsh AR; De A; Das D; Dutta S; Boujedaini N
    Zhong Xi Yi Jie He Xue Bao; 2011 Aug; 9(8):901-12. PubMed ID: 21849152
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A theoretical and empirical investigation of delayed growth response in the continuous culture of bacteria.
    Ellermeyer S; Hendrix J; Ghoochan N
    J Theor Biol; 2003 Jun; 222(4):485-94. PubMed ID: 12781747
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A distinct growth physiology enhances bacterial growth under rapid nutrient fluctuations.
    Nguyen J; Fernandez V; Pontrelli S; Sauer U; Ackermann M; Stocker R
    Nat Commun; 2021 Jun; 12(1):3662. PubMed ID: 34135315
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioenergetic consequences of microbial adaptation to low-nutrient environments.
    Teixeira de Mattos MJ; Neijssel OM
    J Biotechnol; 1997 Dec; 59(1-2):117-26. PubMed ID: 9487720
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Glucose transporters in central nervous system glucose homeostasis.
    Rydzewski BZ; Wozniak MM; Raizada MK
    Adv Exp Med Biol; 1991; 293():397-404. PubMed ID: 1767739
    [No Abstract]   [Full Text] [Related]  

  • 60. Carbohydrate transport in bacteria under environmental conditions, a black box?
    Lengeler JW
    Antonie Van Leeuwenhoek; 1993; 63(3-4):275-88. PubMed ID: 8279824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.