BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 8703932)

  • 1. Role of calf RTH-1 nuclease in removal of 5'-ribonucleotides during Okazaki fragment processing.
    Huang L; Rumbaugh JA; Murante RS; Lin RJ; Rust L; Bambara RA
    Biochemistry; 1996 Jul; 35(28):9266-77. PubMed ID: 8703932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creation and removal of embedded ribonucleotides in chromosomal DNA during mammalian Okazaki fragment processing.
    Rumbaugh JA; Murante RS; Shi S; Bambara RA
    J Biol Chem; 1997 Sep; 272(36):22591-9. PubMed ID: 9278414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calf RTH-1 nuclease can remove the initiator RNAs of Okazaki fragments by endonuclease activity.
    Murante RS; Rumbaugh JA; Barnes CJ; Norton JR; Bambara RA
    J Biol Chem; 1996 Oct; 271(42):25888-97. PubMed ID: 8824221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic completion of mammalian lagging-strand DNA replication.
    Turchi JJ; Huang L; Murante RS; Kim Y; Bambara RA
    Proc Natl Acad Sci U S A; 1994 Oct; 91(21):9803-7. PubMed ID: 7524089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calf 5' to 3' exo/endonuclease must slide from a 5' end of the substrate to perform structure-specific cleavage.
    Murante RS; Rust L; Bambara RA
    J Biol Chem; 1995 Dec; 270(51):30377-83. PubMed ID: 8530463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-specific cleavage of the RNA primer from Okazaki fragments by calf thymus RNase HI.
    Huang L; Kim Y; Turchi JJ; Bambara RA
    J Biol Chem; 1994 Oct; 269(41):25922-7. PubMed ID: 7523396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Junction ribonuclease: an activity in Okazaki fragment processing.
    Murante RS; Henricksen LA; Bambara RA
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2244-9. PubMed ID: 9482870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Visualization of RNA-DNA Primer Removal from Okazaki Fragments Provides Support for Flap Cleavage and Exonucleolytic Pathways in Eukaryotic Cells.
    Liu B; Hu J; Wang J; Kong D
    J Biol Chem; 2017 Mar; 292(12):4777-4788. PubMed ID: 28159842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saccharomyces cerevisiae RNase H(35) functions in RNA primer removal during lagging-strand DNA synthesis, most efficiently in cooperation with Rad27 nuclease.
    Qiu J; Qian Y; Frank P; Wintersberger U; Shen B
    Mol Cell Biol; 1999 Dec; 19(12):8361-71. PubMed ID: 10567561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I.
    Carver TE; Millar DP
    Biochemistry; 1998 Feb; 37(7):1898-904. PubMed ID: 9485315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of RTH1 nuclease of the yeast Saccharomyces cerevisiae by replication protein A.
    Biswas EE; Zhu FX; Biswas SB
    Biochemistry; 1997 May; 36(20):5955-62. PubMed ID: 9166765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Okazaki fragment processing: modulation of the strand displacement activity of DNA polymerase delta by the concerted action of replication protein A, proliferating cell nuclear antigen, and flap endonuclease-1.
    Maga G; Villani G; Tillement V; Stucki M; Locatelli GA; Frouin I; Spadari S; Hübscher U
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14298-303. PubMed ID: 11724925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Junction ribonuclease: a ribonuclease HII orthologue from Thermus thermophilus HB8 prefers the RNA-DNA junction to the RNA/DNA heteroduplex.
    Ohtani N; Tomita M; Itaya M
    Biochem J; 2008 Jun; 412(3):517-26. PubMed ID: 18318663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical Characterization of Mycobacterium smegmatis RnhC (MSMEG_4305), a Bifunctional Enzyme Composed of Autonomous N-Terminal Type I RNase H and C-Terminal Acid Phosphatase Domains.
    Jacewicz A; Shuman S
    J Bacteriol; 2015 Aug; 197(15):2489-98. PubMed ID: 25986906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyamide nucleic acid targeted to the primer binding site of the HIV-1 RNA genome blocks in vitro HIV-1 reverse transcription.
    Lee R; Kaushik N; Modak MJ; Vinayak R; Pandey VN
    Biochemistry; 1998 Jan; 37(3):900-10. PubMed ID: 9454580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural variation among retroviral primer-DNA junctions: solution structure of the HIV-1 (-)-strand Okazaki fragment r(gcca)d(CTGC).d(GCAGTGGC).
    Fedoroff OYu ; Salazar M; Reid BR
    Biochemistry; 1996 Aug; 35(34):11070-80. PubMed ID: 8780509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural biochemistry of a type 2 RNase H: RNA primer recognition and removal during DNA replication.
    Chapados BR; Chai Q; Hosfield DJ; Qiu J; Shen B; Tainer JA
    J Mol Biol; 2001 Mar; 307(2):541-56. PubMed ID: 11254381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative regulation for Okazaki fragment processing by RNase HII and FEN-1 purified from a hyperthermophilic archaeon, Pyrococcus furiosus.
    Sato A; Kanai A; Itaya M; Tomita M
    Biochem Biophys Res Commun; 2003 Sep; 309(1):247-52. PubMed ID: 12943689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro reconstitution of RNA primer removal in Archaea reveals the existence of two pathways.
    Henneke G
    Biochem J; 2012 Oct; 447(2):271-80. PubMed ID: 22849643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and characterization of the DNA polymerase alpha associated exonuclease: the RTH1 gene product.
    Zhu FX; Biswas EE; Biswas SB
    Biochemistry; 1997 May; 36(20):5947-54. PubMed ID: 9166764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.