BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 8703944)

  • 1. Topological folding and proteolysis profile of P-glycoprotein in membranes of multidrug-resistant cells: implications for the drug-transport mechanism.
    Zhang M; Wang G; Shapiro A; Zhang JT
    Biochemistry; 1996 Jul; 35(30):9728-36. PubMed ID: 8703944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural flexibility of the linker region of human P-glycoprotein permits ATP hydrolysis and drug transport.
    Hrycyna CA; Airan LE; Germann UA; Ambudkar SV; Pastan I; Gottesman MM
    Biochemistry; 1998 Sep; 37(39):13660-73. PubMed ID: 9753453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of the P-glycoprotein multidrug efflux pump with cholesterol: effects on ATPase activity, drug binding and transport.
    Eckford PD; Sharom FJ
    Biochemistry; 2008 Dec; 47(51):13686-98. PubMed ID: 19049391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue distribution of the human MDR3 P-glycoprotein.
    Smit JJ; Schinkel AH; Mol CA; Majoor D; Mooi WJ; Jongsma AP; Lincke CR; Borst P
    Lab Invest; 1994 Nov; 71(5):638-49. PubMed ID: 7734012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed fluorescence labeling of P-glycoprotein on cysteine residues in the nucleotide binding domains.
    Liu R; Sharom FJ
    Biochemistry; 1996 Sep; 35(36):11865-73. PubMed ID: 8794769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P-glycoprotein does not reduce substrate concentration from the extracellular leaflet of the plasma membrane in living cells.
    Chen Y; Pant AC; Simon SM
    Cancer Res; 2001 Nov; 61(21):7763-9. PubMed ID: 11691790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen.
    Lee JS; Paull K; Alvarez M; Hose C; Monks A; Grever M; Fojo AT; Bates SE
    Mol Pharmacol; 1994 Oct; 46(4):627-38. PubMed ID: 7969041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism involved in generating the carboxyl-terminal half topology of P-glycoprotein.
    Han ES; Zhang JT
    Biochemistry; 1998 Aug; 37(34):11996-2004. PubMed ID: 9718325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-cycle-dependent turnover of P-glycoprotein in multidrug-resistant cells.
    Zhang W; Ling V
    J Cell Physiol; 2000 Jul; 184(1):17-26. PubMed ID: 10825230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane orientation of carboxyl-terminal half P-glycoprotein: topogenesis of transmembrane segments.
    Han ES; Zhang JT
    Eur J Cell Biol; 1999 Sep; 78(9):624-31. PubMed ID: 10535304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of P-glycoprotein-mediated multidrug resistance by acceleration of passive drug permeation across the plasma membrane.
    Regev R; Katzir H; Yeheskely-Hayon D; Eytan GD
    FEBS J; 2007 Dec; 274(23):6204-14. PubMed ID: 17986257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of random recombination between human MDR1 and mouse mdr1a cDNA in a pHaMDR-dihydrofolate reductase bicistronic expression system.
    Shoshani T; Zhang S; Dey S; Pastan I; Gottesman MM
    Mol Pharmacol; 1998 Oct; 54(4):623-30. PubMed ID: 9765504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voacamine, an alkaloid extracted from Peschiera fuchsiaefolia, inhibits P-glycoprotein action in multidrug-resistant tumor cells.
    Meschini S; Marra M; Condello M; Calcabrini A; Federici E; Dupuis ML; Cianfriglia M; Arancia G
    Int J Oncol; 2005 Dec; 27(6):1597-603. PubMed ID: 16273216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-CD19 antibodies inhibit the function of the P-gp pump in multidrug-resistant B lymphoma cells.
    Ghetie MA; Ghetie V; Vitetta ES
    Clin Cancer Res; 1999 Dec; 5(12):3920-7. PubMed ID: 10632321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The power of the pump: mechanisms of action of P-glycoprotein (ABCB1).
    Ambudkar SV; Kim IW; Sauna ZE
    Eur J Pharm Sci; 2006 Apr; 27(5):392-400. PubMed ID: 16352426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proximity of the nucleotide binding domains of the P-glycoprotein multidrug transporter to the membrane surface: a resonance energy transfer study.
    Liu R; Sharom FJ
    Biochemistry; 1998 May; 37(18):6503-12. PubMed ID: 9572868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulator-induced interference in functional cross talk between the substrate and the ATP sites of human P-glycoprotein.
    Maki N; Moitra K; Silver C; Ghosh P; Chattopadhyay A; Dey S
    Biochemistry; 2006 Feb; 45(8):2739-51. PubMed ID: 16489767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmembrane aromatic amino acid distribution in P-glycoprotein. A functional role in broad substrate specificity.
    Pawagi AB; Wang J; Silverman M; Reithmeier RA; Deber CM
    J Mol Biol; 1994 Jan; 235(2):554-64. PubMed ID: 7904655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic mechanism of P-glycoprotein.
    Senior AE
    Acta Physiol Scand Suppl; 1998 Aug; 643():213-8. PubMed ID: 9789563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Downregulation of JNK/SAPK activity is associated with the cross-resistance to P-glycoprotein-unrelated drugs in multidrug-resistant FM3A/M cells overexpressing P-glycoprotein.
    Kang CD; Ahn BK; Jeong CS; Kim KW; Lee HJ; Yoo SD; Chung BS; Kim SH
    Exp Cell Res; 2000 Apr; 256(1):300-7. PubMed ID: 10739677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.