BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 8704216)

  • 1. Inhibition of hemoglobin expression by heterologous production of nitric oxide synthase in the K562 erythroleukemic cell line.
    Rafferty SP; Domachowske JB; Malech HL
    Blood; 1996 Aug; 88(3):1070-8. PubMed ID: 8704216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide alters the expression of gamma-globin, H-ferritin, and transferrin receptor in human K562 cells at the posttranscriptional level.
    Domachowske JB; Rafferty SP; Singhania N; Mardiney M; Malech HL
    Blood; 1996 Oct; 88(8):2980-8. PubMed ID: 8874195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of the ferritin H subunit in cultured erythroid cells changes the intracellular iron distribution.
    Picard V; Renaudie F; Porcher C; Hentze MW; Grandchamp B; Beaumont C
    Blood; 1996 Mar; 87(5):2057-64. PubMed ID: 8634457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired erythroid-specific gene expression in cAMP-dependent protein kinase-deficient murine erythroleukemia cells.
    Pilz RB
    J Biol Chem; 1993 Sep; 268(27):20252-8. PubMed ID: 8376386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translational control of 5-aminolevulinate synthase mRNA by iron-responsive elements in erythroid cells.
    Melefors O; Goossen B; Johansson HE; Stripecke R; Gray NK; Hentze MW
    J Biol Chem; 1993 Mar; 268(8):5974-8. PubMed ID: 8449958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of hemoglobin synthesis in erythroid differentiating K562 cells. I. Role of iron in erythroid cell heme synthesis.
    Kawasaki N; Morimoto K; Tanimoto T; Hayakawa T
    Arch Biochem Biophys; 1996 Apr; 328(2):289-94. PubMed ID: 8645006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of coproporphyrinogen oxidase and synthesis of hemoglobin in human erythroleukemia K562 cells.
    Taketani S; Furukawa T; Furuyama K
    Eur J Biochem; 2001 Mar; 268(6):1705-11. PubMed ID: 11248690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein tyrosine phosphatase-dependent activation of beta-globin and delta-aminolevulinic acid synthase genes in the camptothecin-induced IW32 erythroleukemia cell differentiation.
    Wang MC; Liu JH; Wang FF
    Mol Pharmacol; 1997 Apr; 51(4):558-66. PubMed ID: 9106619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multifunctional 5-aminolevulinic acid derivative induces erythroid differentiation of K562 human erythroleukemic cells.
    Berkovitch-Luria G; Yakobovitch S; Weitman M; Nudelman A; Rozic G; Rephaeli A; Malik Z
    Eur J Pharm Sci; 2012 Aug; 47(1):206-14. PubMed ID: 22705251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of beta-globin mRNA accumulation by heme in dimethyl sulfoxide (DMSO)-sensitive and DMSO-resistant murine erythroleukemia cells.
    Fukuda Y; Fujita H; Garbaczewski L; Sassa S
    Blood; 1994 Mar; 83(6):1662-7. PubMed ID: 8123858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide-releasing agents and cGMP analogues inhibit murine erythroleukemia cell differentiation and suppress erythroid-specific gene expression: correlation with decreased DNA binding of NF-E2 and altered c-myb mRNA expression.
    Suhasini M; Boss GR; Pascual FE; Pilz RB
    Cell Growth Differ; 1995 Dec; 6(12):1559-66. PubMed ID: 9019161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endogenously produced nitric oxide increases tumor necrosis factor-alpha production in transfected human U937 cells.
    Yan L; Wang S; Rafferty SP; Wesley RA; Danner RL
    Blood; 1997 Aug; 90(3):1160-7. PubMed ID: 9242548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell biology of heme.
    Ponka P
    Am J Med Sci; 1999 Oct; 318(4):241-56. PubMed ID: 10522552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential hemoglobin synthesis in murine erythroleukemic cells: hemin effects.
    Zucker RM; Umlas ME; Decal DL; Whittington KB
    Cell Biochem Funct; 1987 Jan; 5(1):27-35. PubMed ID: 3469035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5-Aminolevulinate synthase expression and hemoglobin synthesis in a human myelogenous leukemia cell line.
    Nagai T; Harigae H; Furuyama K; Munakata H; Hayashi N; Endo K; Sassa S; Yamamoto M
    J Biochem; 1997 Mar; 121(3):487-95. PubMed ID: 9133617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-linked control of globin mRNA and hemoglobin production in erythroleukemia-lymphoma cell hybrids.
    Benoff S; Bruce SA; Skoultchi AI
    Somatic Cell Genet; 1980 Jan; 6(1):15-28. PubMed ID: 6929114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deficient heme synthesis as the cause of noninducibility of hemoglobin synthesis in a Friend erythroleukemia cell line.
    Rutherford TR; Weatherall DJ
    Cell; 1979 Feb; 16(2):415-23. PubMed ID: 287566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative control of hemoglobin production in somatic cell hybrids due to heme deficiency.
    Benoff S; Bruce SA; Skoultchi AI
    Proc Natl Acad Sci U S A; 1978 Sep; 75(9):4354-8. PubMed ID: 279921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of a functional inducible nitric oxide synthase in hairy cell leukaemia and ESKOL cell line.
    Roman V; Zhao H; Fourneau JM; Marconi A; Dugas N; Dugas B; Sigaux F; Kolb JP
    Leukemia; 2000 Apr; 14(4):696-705. PubMed ID: 10764157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of 5-aminolevulinic acid on erythropoiesis: a preclinical in vitro characterization for the treatment of congenital sideroblastic anemia.
    Fujiwara T; Okamoto K; Niikuni R; Takahashi K; Okitsu Y; Fukuhara N; Onishi Y; Ishizawa K; Ichinohasama R; Nakamura Y; Nakajima M; Tanaka T; Harigae H
    Biochem Biophys Res Commun; 2014 Nov; 454(1):102-8. PubMed ID: 25450364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.