These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 8704995)

  • 21. Utilization of transferrin-bound iron by Listeria monocytogenes.
    Hartford T; O'Brien S; Andrew PW; Jones D; Roberts IS
    FEMS Microbiol Lett; 1993 Apr; 108(3):311-8. PubMed ID: 8514118
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of vulnibactin and exocellular protease in utilization of transferrin- and lactoferrin-bound iron by Vibrio vulnificus.
    Okujo N; Akiyama T; Miyoshi S; Shinoda S; Yamamoto S
    Microbiol Immunol; 1996; 40(8):595-8. PubMed ID: 8887355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Outer Membrane Protein FstC of
    Rey-Varela D; Cisneros-Sureda J; Balado M; Rodríguez J; Lemos ML; Jiménez C
    ACS Infect Dis; 2019 Nov; 5(11):1936-1951. PubMed ID: 31556990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Occurrence and significance of atypical Aeromonas salmonicida in non-salmonid and salmonid fish species: a review.
    Wiklund T; Dalsgaard I
    Dis Aquat Organ; 1998 Feb; 32(1):49-69. PubMed ID: 9696626
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acquisition of iron by the non-siderophore-producing Pseudomonas fragi.
    Champomier-Vergès MC; Stintzi A; Meyer JM
    Microbiology (Reading); 1996 May; 142 ( Pt 5)():1191-1199. PubMed ID: 8704960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High affinity iron-uptake systems in Vibrio damsela: role in the acquisition of iron from transferrin.
    Fouz B; Biosca EG; Amaro C
    J Appl Microbiol; 1997 Feb; 82(2):157-67. PubMed ID: 12452589
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tritrichomonas foetus: iron acquisition from lactoferrin and transferrin.
    Tachezy J; Kulda J; Bahníková I; Suchan P; Rázga J; Schrével J
    Exp Parasitol; 1996 Jul; 83(2):216-28. PubMed ID: 8682190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative study of iron acquisition by biotype 1 and biotype 2 strains of Actinobacillus pleuropneumoniae.
    D'Silva CG; Archibald FS; Niven DF
    Vet Microbiol; 1995 Apr; 44(1):11-23. PubMed ID: 7667902
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of transferrin receptors by Histophilus ovis: three of five strains require two signals.
    Ekins A; Niven DF
    Can J Microbiol; 2001 May; 47(5):417-23. PubMed ID: 11400732
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of proteolytic activity of Vibrio vulnificus by iron-containing compounds.
    Simpson LM; Oliver JD
    Microb Pathog; 1993 Mar; 14(3):249-52. PubMed ID: 8321126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Survival of Aspergillus fumigatus in serum involves removal of iron from transferrin: the role of siderophores.
    Hissen AH; Chow JM; Pinto LJ; Moore MM
    Infect Immun; 2004 Mar; 72(3):1402-8. PubMed ID: 14977945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iron acquisition by Actinobacillus suis: identification and characterization of transferrin receptor proteins and encoding genes.
    Bahrami F; Ekins A; Niven DF
    Vet Microbiol; 2003 Jun; 94(1):79-92. PubMed ID: 12742718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acquisition of iron from transferrin and lactoferrin by the protozoan Leishmania chagasi.
    Wilson ME; Vorhies RW; Andersen KA; Britigan BE
    Infect Immun; 1994 Aug; 62(8):3262-9. PubMed ID: 8039896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteases of a Bacillus subtilis clinical isolate facilitate swarming and siderophore-mediated iron uptake via proteolytic cleavage of transferrin.
    Park RY; Sun HY; Choi MH; Bai YH; Chung YY; Shin SH
    Biol Pharm Bull; 2006 Apr; 29(4):850-3. PubMed ID: 16595935
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Response of Neisseria gonorrhoeae to iron limitation: alterations in expression of membrane proteins without apparent siderophore production.
    West SE; Sparling PF
    Infect Immun; 1985 Feb; 47(2):388-94. PubMed ID: 3155708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning and functional characterization of Neisseria gonorrhoeae tonB, exbB and exbD genes.
    Biswas GD; Anderson JE; Sparling PF
    Mol Microbiol; 1997 Apr; 24(1):169-79. PubMed ID: 9140974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Haemophilus influenzae can use human transferrin as a sole source for required iron.
    Herrington DA; Sparling PF
    Infect Immun; 1985 Apr; 48(1):248-51. PubMed ID: 3872264
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heme-binding of bovine lactoferrin: the potential presence of a heme-binding capacity in an ancestral transferrin gene.
    Saito N; Iio T; Yoshikawa Y; Ohtsuka H; Orino K
    Biometals; 2018 Feb; 31(1):131-138. PubMed ID: 29285662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of catechol-siderophore and utilization of transferrin-bound iron in Bacillus cereus.
    Park RY; Choi MH; Sun HY; Shin SH
    Biol Pharm Bull; 2005 Jun; 28(6):1132-5. PubMed ID: 15930764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Siderophore-mediated utilization of iron bound to transferrin by Vibrio parahaemolyticus.
    Yamamoto S; Okujo N; Matsuura S; Fujiwara I; Fujita Y; Shinoda S
    Microbiol Immunol; 1994; 38(9):687-93. PubMed ID: 7854209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.