These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 8705254)

  • 1. The delivery of insulin from aqueous and non-aqueous reservoirs governed by a glucose sensitive gel membrane.
    Taylor MJ; Tanna S; Taylor PM; Adams G
    J Drug Target; 1995; 3(3):209-16. PubMed ID: 8705254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent coupling of concanavalin A to a Carbopol 934P and 941P carrier in glucose-sensitive gels for delivery of insulin.
    Tanna S; Sahota T; Clark J; Taylor MJ
    J Pharm Pharmacol; 2002 Nov; 54(11):1461-9. PubMed ID: 12495548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insulin delivery governed by covalently modified lectin-glycogen gels sensitive to glucose.
    Tanna S; Taylor MJ; Adams G
    J Pharm Pharmacol; 1999 Oct; 51(10):1093-8. PubMed ID: 10579679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A covalently stabilised glucose responsive gel formulation with a Carbopol carrier.
    Tanna S; Sahota T; Clark J; Taylor MJ
    J Drug Target; 2002 Aug; 10(5):411-8. PubMed ID: 12442812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose-induced release of glycosylpoly(ethylene glycol) insulin bound to a soluble conjugate of concanavalin A.
    Liu F; Song SC; Mix D; Baudys M; Kim SW
    Bioconjug Chem; 1997; 8(5):664-72. PubMed ID: 9327129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A totally synthetic glucose responsive gel operating in physiological aqueous conditions.
    Matsumoto A; Yamamoto K; Yoshida R; Kataoka K; Aoyagi T; Miyahara Y
    Chem Commun (Camb); 2010 Apr; 46(13):2203-5. PubMed ID: 20234906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential novel methods for insulin administration: II. Self-regulating internal drug delivery systems.
    Stephen RL; Kim SW; Jacobsen SC
    Biomed Biochim Acta; 1984; 43(5):559-60. PubMed ID: 6383362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose-sensitive gel rheology of dextran-concanavalin A mixtures suitable for self-regulating insulin delivery.
    Taylor MJ; Tanna S; Sahota TS
    Pharm Dev Technol; 2010; 15(1):80-8. PubMed ID: 19505210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development, characterization and evaluation of an auto-regulatory delivery system for insulin.
    Vyas SP; Karajgi JS; Gogoi PJ; Jain NK
    J Microencapsul; 1991; 8(2):235-42. PubMed ID: 1765903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of varying molecular weight of dextran on acrylic-derivatized dextran and concanavalin A glucose-responsive materials for closed-loop insulin delivery.
    Sahota T; Sawicka K; Taylor J; Tanna S
    Drug Dev Ind Pharm; 2011 Mar; 37(3):351-8. PubMed ID: 21244237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation and optimisation of a self-regulating insulin delivery system.
    Fischel-Ghodsian F; Newton JM
    J Drug Target; 1993; 1(1):67-80. PubMed ID: 8069546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and evaluation of biodegradable, biosensitive in situ gelling system for pulsatile delivery of insulin.
    Kashyap N; Viswanad B; Sharma G; Bhardwaj V; Ramarao P; Ravi Kumar MN
    Biomaterials; 2007 Apr; 28(11):2051-60. PubMed ID: 17240443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of thermosensitive chitosan-based hydrogels by rheology and electron paramagnetic resonance spectroscopy.
    Kempe S; Metz H; Bastrop M; Hvilsom A; Contri RV; Mäder K
    Eur J Pharm Biopharm; 2008 Jan; 68(1):26-33. PubMed ID: 17870449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of degree of acrylic derivatisation on dextran and concanavalin A glucose-responsive materials for closed-loop insulin delivery.
    Tanna S; Sahota TS; Sawicka K; Taylor MJ
    Biomaterials; 2006 Sep; 27(25):4498-507. PubMed ID: 16678254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of pore size and permeability of a glucose-responsive gating membrane for insulin delivery.
    Chu LY; Li Y; Zhu JH; Wang HD; Liang YJ
    J Control Release; 2004 May; 97(1):43-53. PubMed ID: 15147803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalized injectable hydrogels for controlled insulin delivery.
    Huynh DP; Nguyen MK; Pi BS; Kim MS; Chae SY; Lee KC; Kim BS; Kim SW; Lee DS
    Biomaterials; 2008 Jun; 29(16):2527-34. PubMed ID: 18329707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of a local heating device on insulin and glucose pharmacokinetic profiles in an open-label, randomized, two-period, one-way crossover study in patients with type 1 diabetes using continuous subcutaneous insulin infusion.
    Raz I; Weiss R; Yegorchikov Y; Bitton G; Nagar R; Pesach B
    Clin Ther; 2009 May; 31(5):980-7. PubMed ID: 19539098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH.
    Matsumoto A; Yoshida R; Kataoka K
    Biomacromolecules; 2004; 5(3):1038-45. PubMed ID: 15132698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheological characterisation of dextran-concanavalin A mixtures as a basis for a self-regulated drug delivery device.
    Taylor MJ; Tanna S; Sahota TS; Voermans B
    Eur J Pharm Biopharm; 2006 Jan; 62(1):94-100. PubMed ID: 16183269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a reservoir-type transdermal enantioselective-controlled delivery system for racemic propranolol using a molecularly imprinted polymer composite membrane.
    Suedee R; Bodhibukkana C; Tangthong N; Amnuaikit C; Kaewnopparat S; Srichana T
    J Control Release; 2008 Aug; 129(3):170-8. PubMed ID: 18550193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.