These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 870589)
41. Feasibility of cryopreservation of zebrafish (Danio rerio) primordial germ cells by whole embryo freezing. Higaki S; Mochizuki K; Baba H; Akashi Y; Yamaha E; Katagiri S; Takahashi Y Jpn J Vet Res; 2009 Aug; 57(2):119-28. PubMed ID: 19827747 [TBL] [Abstract][Full Text] [Related]
42. Primordial germ cell migration and the assembly of the Drosophila embryonic gonad. Warrior R Dev Biol; 1994 Nov; 166(1):180-94. PubMed ID: 7958445 [TBL] [Abstract][Full Text] [Related]
43. Observations on early germ cell development and premeiotic ribosomal DNA amplification in Xenopus laevis. Kalt MR; Gall JG J Cell Biol; 1974 Aug; 62(2):460-72. PubMed ID: 4426916 [TBL] [Abstract][Full Text] [Related]
44. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus. Gross JM; McClay DR Dev Biol; 2001 Nov; 239(1):132-47. PubMed ID: 11784024 [TBL] [Abstract][Full Text] [Related]
45. Overexpression of S-adenosylmethionine decarboxylase (SAMDC) activates the maternal program of apoptosis shortly after MBT in Xenopus embryos. Kai M; Higo T; Yokoska J; Kaito C; Kajita E; Fukamachi H; Takayama E; Igarashi K; Shiokawa K Int J Dev Biol; 2000 Aug; 44(5):507-10. PubMed ID: 11032186 [TBL] [Abstract][Full Text] [Related]
46. Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus embryos activates maternal program of apoptosis as a "fail-safe" mechanism of early embryogenesis. Kai M; Kaito C; Fukamachi H; Higo T; Takayama E; Hara H; Ohya Y; Igarashi K; Shiokawa K Cell Res; 2003 Jun; 13(3):147-58. PubMed ID: 12862315 [TBL] [Abstract][Full Text] [Related]
47. A decreased number of primordial germ cells and the small numbers and reduced sizes of germinal granules in the periodic albino mutant of Xenopus laevis. Kotani M; Ikenishi K; Torii E; Amemiya E; Kadowaki M Dev Biol; 1993 Nov; 160(1):289-91. PubMed ID: 8224546 [TBL] [Abstract][Full Text] [Related]
48. Cdc42 Effector Protein 2 (XCEP2) is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis. Nelson KK; Nelson RW BMC Dev Biol; 2004 Oct; 4():13. PubMed ID: 15473906 [TBL] [Abstract][Full Text] [Related]
49. Ectopic formation of primordial germ cells by transplantation of the germ plasm: direct evidence for germ cell determinant in Xenopus. Tada H; Mochii M; Orii H; Watanabe K Dev Biol; 2012 Nov; 371(1):86-93. PubMed ID: 23046626 [TBL] [Abstract][Full Text] [Related]
50. Role of maternal Xenopus syntabulin in germ plasm aggregation and primordial germ cell specification. Oh D; Houston DW Dev Biol; 2017 Dec; 432(2):237-247. PubMed ID: 29037933 [TBL] [Abstract][Full Text] [Related]
51. [Proliferative activity and the kinetics of the cell populations of chick embryo blastoderm in the period of gastrulation and early organogenesis. I. The proliferative activity and nature of the transition by mitotic cycle cells]. Efremov VI; Sergovskaia TV Ontogenez; 1979; 10(5):448-60. PubMed ID: 492654 [TBL] [Abstract][Full Text] [Related]
52. Xpat, a gene expressed specifically in germ plasm and primordial germ cells of Xenopus laevis. Hudson C; Woodland HR Mech Dev; 1998 May; 73(2):159-68. PubMed ID: 9622619 [TBL] [Abstract][Full Text] [Related]
53. Localization of germline marker vasa homolog RNA to a single blastomere at early cleavage stages in the oriental river prawn Macrobrachium nipponense: evidence for germ cell specification by preformation. Qiu GF; Chen Y; Cui Z; Zhu XL Gene; 2013 Jan; 513(1):53-62. PubMed ID: 23154059 [TBL] [Abstract][Full Text] [Related]
54. A method for isolating uncontaminated nuclei from all stages of developing Xenopus laevis embryos. Farzaneh F; Pearson CK J Embryol Exp Morphol; 1978 Dec; 48():101-8. PubMed ID: 370328 [TBL] [Abstract][Full Text] [Related]
55. Ultraviolet effects on presumptive primordial germ cells (pPGCs) in Xenopus laevis after the cleavage stage. Ikenishi K; Kotani M Dev Biol; 1979 Mar; 69(1):237-46. PubMed ID: 571826 [No Abstract] [Full Text] [Related]
56. Differentiation of presumptive primordial germ cell (pPGC)-like cells in explants into PGCs in experimental tadpoles. Ikenishi K; Okuda T; Nakazato S Dev Biol; 1984 May; 103(1):258-62. PubMed ID: 6714519 [TBL] [Abstract][Full Text] [Related]
57. Primordial Germ Cell Isolation from Xenopus laevis Embryos. Butler AM; Aguero T; Newman KM; King ML Methods Mol Biol; 2017; 1463():115-124. PubMed ID: 27734352 [TBL] [Abstract][Full Text] [Related]
58. Xcat2 RNA is a translationally sequestered germ plasm component in Xenopus. MacArthur H; Bubunenko M; Houston DW; King ML Mech Dev; 1999 Jun; 84(1-2):75-88. PubMed ID: 10473122 [TBL] [Abstract][Full Text] [Related]
59. The formation of the gonadal ridge in Xenopus laevis. III. The behaviour of isolated primordial germ cells in vitro. Wylie CC; Roos TB J Embryol Exp Morphol; 1976 Feb; 35(1):149-57. PubMed ID: 775008 [TBL] [Abstract][Full Text] [Related]
60. Presumptive Primordial Germ Cells (pPGCs) and PGCs in Tadpoles from UV-irradiated embryos of Xenopus: (UV-irradiation/primordial germ cell/monoclonal antibody/complete sterility/Xenopus laevis). Kotani M; Ogiso Y; Ozaki R; Ikenishi K; Tsugawa K Dev Growth Differ; 1994 Oct; 36(5):457-467. PubMed ID: 37280899 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]