These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 870599)
41. Jumping mechanisms and performance in beetles. II. Weevils (Coleoptera: Curculionidae: Rhamphini). Nadein K; Betz O Arthropod Struct Dev; 2018 Mar; 47(2):131-143. PubMed ID: 29496627 [TBL] [Abstract][Full Text] [Related]
42. Development and deposition of resilin in energy stores for locust jumping. Burrows M J Exp Biol; 2016 Aug; 219(Pt 16):2449-57. PubMed ID: 27259374 [TBL] [Abstract][Full Text] [Related]
43. The vibrational startle response of the desert locust Schistocerca gregaria. Friedel T J Exp Biol; 1999 Aug; 202(Pt 16):2151-9. PubMed ID: 10409486 [TBL] [Abstract][Full Text] [Related]
44. Presynaptic control of transmission along the pathway mediating disynaptic reciprocal inhibition in the cat. EnrĂquez-Denton M; Nielsen J; Perreault MC; Morita H; Petersen N; Hultborn H J Physiol; 2000 Aug; 526 Pt 3(Pt 3):623-37. PubMed ID: 10922013 [TBL] [Abstract][Full Text] [Related]
45. Effects of temperature on a central synapse between identified motor neurons in the locust. Burrows M J Comp Physiol A; 1989 Sep; 165(5):687-95. PubMed ID: 2795499 [TBL] [Abstract][Full Text] [Related]
46. Responses of spiking local interneurones in the locust to proprioceptive signals from the femoral chordotonal organ. Burrows M J Comp Physiol A; 1988 Dec; 164(2):207-17. PubMed ID: 3244128 [TBL] [Abstract][Full Text] [Related]
47. Leg position learning by an insect: II. Motor strategies underlying learned leg extension. Forman RR; Zill SN J Neurobiol; 1984 May; 15(3):221-37. PubMed ID: 6736952 [TBL] [Abstract][Full Text] [Related]
48. Coupling of efferent neuromodulatory neurons to rhythmical leg motor activity in the locust. Baudoux S; Duch C; Morris OT J Neurophysiol; 1998 Jan; 79(1):361-70. PubMed ID: 9425205 [TBL] [Abstract][Full Text] [Related]
49. Spike width reduction modifies the dynamics of short-term depression at a central synapse in the locust. Niven JE; Burrows M J Neurosci; 2003 Aug; 23(20):7461-9. PubMed ID: 12930784 [TBL] [Abstract][Full Text] [Related]
50. The influence of proprioceptors signalling tibial position and movement on the kick motor programme in the locust. Jellema T; Heitler W J Exp Biol; 1997; 200(Pt 18):2405-14. PubMed ID: 9320327 [TBL] [Abstract][Full Text] [Related]
51. Physiological and Ultrastructural Characterization of a Central Synaptic Connection between Identified Motor Neurons in the Locust. Burrows M; Watson AH; Brunn DE Eur J Neurosci; 1989 Mar; 1(2):111-126. PubMed ID: 12106160 [TBL] [Abstract][Full Text] [Related]
52. Reciprocal Ia inhibition contributes to motoneuronal hyperpolarisation during the inactive phase of locomotion and scratching in the cat. Geertsen SS; Stecina K; Meehan CF; Nielsen JB; Hultborn H J Physiol; 2011 Jan; 589(Pt 1):119-34. PubMed ID: 21059756 [TBL] [Abstract][Full Text] [Related]
53. Inhibition versus facilitation of the reflex responsiveness of identified wrist extensor motor units by antagonist flexor afferent inputs in humans. Aimonetti JM; Vedel JP; Schmied A; Pagni S Exp Brain Res; 2000 Aug; 133(3):391-401. PubMed ID: 10958529 [TBL] [Abstract][Full Text] [Related]
55. Plasticity and proprioception in insects. I. Responses and cellular properties of individual receptors of the locust metathoracic femoral chordotonal organ. Zill SN J Exp Biol; 1985 May; 116():435-61. PubMed ID: 4056657 [TBL] [Abstract][Full Text] [Related]
56. Interactions between segmental leg central pattern generators during fictive rhythms in the locust. Ryckebusch S; Laurent G J Neurophysiol; 1994 Dec; 72(6):2771-85. PubMed ID: 7897488 [TBL] [Abstract][Full Text] [Related]
57. The ultrastructure of identified locust motor neurones and their synaptic relationships. Watson AH; Burrows M J Comp Neurol; 1982 Mar; 205(4):383-97. PubMed ID: 7096627 [TBL] [Abstract][Full Text] [Related]
58. Front leg movements and tibial motoneurons underlying auditory steering in the cricket (Gryllus bimaculatus deGeer). Baden T; Hedwig B J Exp Biol; 2008 Jul; 211(Pt 13):2123-33. PubMed ID: 18552302 [TBL] [Abstract][Full Text] [Related]
59. Glutamatergic central nervous transmission in locusts. Sombati S; Hoyle G J Neurobiol; 1984 Nov; 15(6):507-16. PubMed ID: 6097646 [TBL] [Abstract][Full Text] [Related]
60. Neural correlates of flight loss in a Mexican grasshopper, Barytettix psolus. I. Motor and sensory cells. Arbas EA J Comp Neurol; 1983 Jun; 216(4):369-80. PubMed ID: 6308070 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]