These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 8706003)

  • 1. Separate pathways for p53 induction by ionizing radiation and N-(phosphonoacetyl)-L-aspartate.
    Chen CY; Hall I; Lansing TJ; Gilmer TM; Tlsty TD; Kastan MB
    Cancer Res; 1996 Aug; 56(16):3659-62. PubMed ID: 8706003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential gene expression in p53-mediated G(1) arrest of human fibroblasts after gamma-irradiation or N-phosphoacetyl-L-aspartate treatment.
    Seidita G; Polizzi D; Costanzo G; Costa S; Di Leonardo A
    Carcinogenesis; 2000 Dec; 21(12):2203-10. PubMed ID: 11133809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-(phosphonacetyl)-L-aspartate induces TAp73-dependent apoptosis by modulating multiple Bcl-2 proteins: potential for cancer therapy.
    Ruhul Amin AR; Thakur VS; Gupta K; Agarwal MK; Wald DN; Shin DM; Agarwal ML
    Oncogene; 2013 Feb; 32(7):920-9. PubMed ID: 22430213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MYC abrogates p53-mediated cell cycle arrest in N-(phosphonacetyl)-L-aspartate-treated cells, permitting CAD gene amplification.
    Chernova OB; Chernov MV; Ishizaka Y; Agarwal ML; Stark GR
    Mol Cell Biol; 1998 Jan; 18(1):536-45. PubMed ID: 9418900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reversible, p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage.
    Linke SP; Clarkin KC; Di Leonardo A; Tsou A; Wahl GM
    Genes Dev; 1996 Apr; 10(8):934-47. PubMed ID: 8608941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-strand breaks in DNA by 1-beta-D-arabinofuranosylcytosine and enhanced resistance frequency to N-phosphonoacetyl-L-aspartate.
    Chen Y; Goz B
    Anticancer Res; 1991; 11(1):301-4. PubMed ID: 1850218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of chromosomes implicated in suppression of apoptosis in somatic cell hybrids.
    Speevak MD; Chevrette M
    Biochem Cell Biol; 1994; 72(11-12):655-62. PubMed ID: 7654340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macrophage inhibitory cytokine 1 mediates a p53-dependent protective arrest in S phase in response to starvation for DNA precursors.
    Agarwal MK; Hastak K; Jackson MW; Breit SN; Stark GR; Agarwal ML
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16278-83. PubMed ID: 17050687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of gene amplification as a gain-of-function phenotype of mutant p53 proteins.
    El-Hizawi S; Lagowski JP; Kulesz-Martin M; Albor A
    Cancer Res; 2002 Jun; 62(11):3264-70. PubMed ID: 12036943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p53-dependent cell cycle arrests are preserved in DNA-activated protein kinase-deficient mouse fibroblasts.
    Huang LC; Clarkin KC; Wahl GM
    Cancer Res; 1996 Jul; 56(13):2940-4. PubMed ID: 8674045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated cyclin A associated kinase activity promotes sensitivity of metastatic human cancer cells to DNA antimetabolite drug.
    Wang J; Yin H; Panandikar A; Gandhi V; Sen S
    Int J Oncol; 2015 Aug; 47(2):782-90. PubMed ID: 26058363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribonucleotide reductase R2 gene expression and changes in drug sensitivity and genome stability.
    Huang A; Fan H; Taylor WR; Wright JA
    Cancer Res; 1997 Nov; 57(21):4876-81. PubMed ID: 9354452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p53-dependent growth arrest of REF52 cells containing newly amplified DNA.
    Ishizaka Y; Chernov MV; Burns CM; Stark GR
    Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3224-8. PubMed ID: 7724543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and biological evaluation of S-acyl-3-thiopropyl prodrugs of N-phosphonoacetyl-L-aspartate (PALA).
    Gagnard V; Leydet A; Le Mellay V; Aubenque M; Morère A; Montero JL
    Eur J Med Chem; 2003 Oct; 38(10):883-91. PubMed ID: 14575935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transforming growth factor beta 1 suppresses genomic instability independent of a G1 arrest, p53, and Rb.
    Glick AB; Weinberg WC; Wu IH; Quan W; Yuspa SH
    Cancer Res; 1996 Aug; 56(16):3645-50. PubMed ID: 8706000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A possible role for topoisomerase II in cell death and N-phosphonoacetyl-L-aspartate-resistance frequency and its enhancement by 1-beta-D-arabinofuranosyl cytosine and 5-fluoro-2'-deoxyuridine.
    Goz B; Bastow KF
    Mutat Res; 1997 Aug; 384(2):89-106. PubMed ID: 9298118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-(Phosphonacetyl)-L-aspartate (PALA): current status.
    Rozencweig M; Abele R; Piccart M; Von Hoff DD; Muggia FM
    Recent Results Cancer Res; 1980; 74():72-7. PubMed ID: 7444151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An abnormality in the p53 pathway following gamma-irradiation in many wild-type p53 human melanoma lines.
    Bae I; Smith ML; Sheikh MS; Zhan Q; Scudiero DA; Friend SH; O'Connor PM; Fornace AJ
    Cancer Res; 1996 Feb; 56(4):840-7. PubMed ID: 8631022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defective induction but normal activation and function of p53 in mouse cells lacking poly-ADP-ribose polymerase.
    Agarwal ML; Agarwal A; Taylor WR; Wang ZQ; Wagner EF; Stark GR
    Oncogene; 1997 Aug; 15(9):1035-41. PubMed ID: 9285557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-(Phosphonoacetyl)amino phosphonates. Phosphonate analogues of N-(phosphonoacetyl)-L-aspartic acid (PALA).
    Kafarski P; Lejczak B; Mastalerz P; Duś D; Radzikowski C
    J Med Chem; 1985 Nov; 28(11):1555-8. PubMed ID: 4067984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.