BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8706135)

  • 1. Three-dimensional structure of a DNA repair enzyme, 3-methyladenine DNA glycosylase II, from Escherichia coli.
    Yamagata Y; Kato M; Odawara K; Tokuno Y; Nakashima Y; Matsushima N; Yasumura K; Tomita K; Ihara K; Fujii Y; Nakabeppu Y; Sekiguchi M; Fujii S
    Cell; 1996 Jul; 86(2):311-9. PubMed ID: 8706135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for the excision repair of alkylation-damaged DNA.
    Labahn J; Schärer OD; Long A; Ezaz-Nikpay K; Verdine GL; Ellenberger TE
    Cell; 1996 Jul; 86(2):321-9. PubMed ID: 8706136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model building of DNA repair enzyme 3-methyladenine DNA glycosylase-DNA complex.
    Yamagata Y; Fujii S
    Nucleic Acids Symp Ser; 1995; (34):7-8. PubMed ID: 8841525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA.
    Hollis T; Ichikawa Y; Ellenberger T
    EMBO J; 2000 Feb; 19(4):758-66. PubMed ID: 10675345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural studies of human alkyladenine glycosylase and E. coli 3-methyladenine glycosylase.
    Hollis T; Lau A; Ellenberger T
    Mutat Res; 2000 Aug; 460(3-4):201-10. PubMed ID: 10946229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural bases for substrate recognition and repair system of base-excision DNA repair proteins.
    Fujii S; Yamagata Y
    Nucleic Acids Symp Ser; 2000; (44):57-8. PubMed ID: 12903266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel 3-methyladenine DNA glycosylase from Helicobacter pylori defines a new class within the endonuclease III family of base excision repair glycosylases.
    O'Rourke EJ; Chevalier C; Boiteux S; Labigne A; Ielpi L; Radicella JP
    J Biol Chem; 2000 Jun; 275(26):20077-83. PubMed ID: 10777493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3-Methyladenine-DNA glycosylase I from Escherichia coli-computer modeling and supporting experimental evidence.
    Plochocka D; Kierzek A; Obtulowicz T; Tudek B; Zielenkiewicz P
    Biochem Biophys Res Commun; 2000 Feb; 268(3):724-7. PubMed ID: 10679272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase.
    Putnam CD; Shroyer MJ; Lundquist AJ; Mol CD; Arvai AS; Mosbaugh DW; Tainer JA
    J Mol Biol; 1999 Mar; 287(2):331-46. PubMed ID: 10080896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of Escherichia coli uracil DNA glycosylase and its complexes with uracil and glycerol: structure and glycosylase mechanism revisited.
    Xiao G; Tordova M; Jagadeesh J; Drohat AC; Stivers JT; Gilliland GL
    Proteins; 1999 Apr; 35(1):13-24. PubMed ID: 10090282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases.
    Eichman BF; O'Rourke EJ; Radicella JP; Ellenberger T
    EMBO J; 2003 Oct; 22(19):4898-909. PubMed ID: 14517230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A common mechanism of action for the N-glycosylase activity of DNA N-glycosylase/AP lyases from E. coli and T4.
    Purmal AA; Rabow LE; Lampman GW; Cunningham RP; Kow YW
    Mutat Res; 1996 Dec; 364(3):193-207. PubMed ID: 8960131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-function studies of an unusual 3-methyladenine DNA glycosylase II (AlkA) from Deinococcus radiodurans.
    Moe E; Hall DR; Leiros I; Monsen VT; Timmins J; McSweeney S
    Acta Crystallogr D Biol Crystallogr; 2012 Jun; 68(Pt 6):703-12. PubMed ID: 22683793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallizing thoughts about DNA base excision repair.
    Hollis T; Lau A; Ellenberger T
    Prog Nucleic Acid Res Mol Biol; 2001; 68():305-14. PubMed ID: 11554308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excision of 3-methylguanine from alkylated DNA by 3-methyladenine DNA glycosylase I of Escherichia coli.
    Bjelland S; Bjørås M; Seeberg E
    Nucleic Acids Res; 1993 May; 21(9):2045-9. PubMed ID: 8502545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the basic amino acid cluster and Glu-23 in pyrimidine dimer glycosylase activity of T4 endonuclease V.
    Doi T; Recktenwald A; Karaki Y; Kikuchi M; Morikawa K; Ikehara M; Inaoka T; Hori N; Ohtsuka E
    Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9420-4. PubMed ID: 1409651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MutY DNA glycosylase: base release and intermediate complex formation.
    Zharkov DO; Grollman AP
    Biochemistry; 1998 Sep; 37(36):12384-94. PubMed ID: 9730810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity of Escherichia coli DNA-glycosylases on DNA damaged by methylating and ethylating agents and influence of 3-substituted adenine derivatives.
    Tudek B; Van Zeeland AA; Kusmierek JT; Laval J
    Mutat Res; 1998 Mar; 407(2):169-76. PubMed ID: 9637245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that MutY is a monofunctional glycosylase capable of forming a covalent Schiff base intermediate with substrate DNA.
    Williams SD; David SS
    Nucleic Acids Res; 1998 Nov; 26(22):5123-33. PubMed ID: 9801309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and characterization of a mouse 3-methyladenine/7-methyl-guanine/3-methylguanine DNA glycosylase cDNA whose gene maps to chromosome 11.
    Engelward BP; Boosalis MS; Chen BJ; Deng Z; Siciliano MJ; Samson LD
    Carcinogenesis; 1993 Feb; 14(2):175-81. PubMed ID: 8435858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.