These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 8706698)
1. A site-directed mutagenesis study of Saccharomyces cerevisiae pyrophosphatase. Functional conservation of the active site of soluble inorganic pyrophosphatases. Heikinheimo P; Pohjanjoki P; Helminen A; Tasanen M; Cooperman BS; Goldman A; Baykov A; Lahti R Eur J Biochem; 1996 Jul; 239(1):138-43. PubMed ID: 8706698 [TBL] [Abstract][Full Text] [Related]
2. The R78K and D117E active-site variants of Saccharomyces cerevisiae soluble inorganic pyrophosphatase: structural studies and mechanistic implications. Tuominen V; Heikinheimo P; Kajander T; Torkkel T; Hyytiä T; Käpylä J; Lahti R; Cooperman BS; Goldman A J Mol Biol; 1998 Dec; 284(5):1565-80. PubMed ID: 9878371 [TBL] [Abstract][Full Text] [Related]
3. Evolutionary conservation of enzymatic catalysis: quantitative comparison of the effects of mutation of aligned residues in Saccharomyces cerevisiae and Escherichia coli inorganic pyrophosphatases on enzymatic activity. Pohjanjoki P; Lahti R; Goldman A; Cooperman BS Biochemistry; 1998 Feb; 37(7):1754-61. PubMed ID: 9485300 [TBL] [Abstract][Full Text] [Related]
4. A site-directed mutagenesis study on Escherichia coli inorganic pyrophosphatase. Glutamic acid-98 and lysine-104 are important for structural integrity, whereas aspartic acids-97 and -102 are essential for catalytic activity. Lahti R; Pohjanoksa K; Pitkäranta T; Heikinheimo P; Salminen T; Meyer P; Heinonen J Biochemistry; 1990 Jun; 29(24):5761-6. PubMed ID: 1974462 [TBL] [Abstract][Full Text] [Related]
5. A hybrid mutant form of Escherichia coli inorganic pyrophosphatase. Velichko IS; Baykov AA Biochemistry (Mosc); 1997 Mar; 62(3):233-6. PubMed ID: 9275296 [TBL] [Abstract][Full Text] [Related]
6. Conservation of functional residues between yeast and E. coli inorganic pyrophosphatases. Lahti R; Kolakowski LF; Heinonen J; Vihinen M; Pohjanoksa K; Cooperman BS Biochim Biophys Acta; 1990 May; 1038(3):338-45. PubMed ID: 2160278 [TBL] [Abstract][Full Text] [Related]
7. Directed mutagenesis studies of the metal binding site at the subunit interface of Escherichia coli inorganic pyrophosphatase. Efimova IS; Salminen A; Pohjanjoki P; Lapinniemi J; Magretova NN; Cooperman BS; Goldman A; Lahti R; Baykov AA J Biol Chem; 1999 Feb; 274(6):3294-9. PubMed ID: 9920869 [TBL] [Abstract][Full Text] [Related]
8. Evolutionary conservation of the active site of soluble inorganic pyrophosphatase. Cooperman BS; Baykov AA; Lahti R Trends Biochem Sci; 1992 Jul; 17(7):262-6. PubMed ID: 1323891 [TBL] [Abstract][Full Text] [Related]
9. Ligand binding sites in Escherichia coli inorganic pyrophosphatase: effects of active site mutations. Hyytiä T; Halonen P; Salminen A; Goldman A; Lahti R; Cooperman BS Biochemistry; 2001 Apr; 40(15):4645-53. PubMed ID: 11294631 [TBL] [Abstract][Full Text] [Related]
10. Structure and function analysis of Escherichia coli inorganic pyrophosphatase: is a hydroxide ion the key to catalysis? Salminen T; Käpylä J; Heikinheimo P; Kankare J; Goldman A; Heinonen J; Baykov AA; Cooperman BS; Lahti R Biochemistry; 1995 Jan; 34(3):782-91. PubMed ID: 7827037 [TBL] [Abstract][Full Text] [Related]
11. Effect of D42N substitution in Escherichia coli inorganic pyrophosphatase on catalytic activity and Mg2+ binding. Avaeva SM; Rodina EV; Kurilova SA; Nazarova TI; Vorobyeva NN FEBS Lett; 1996 Aug; 392(2):91-4. PubMed ID: 8772181 [TBL] [Abstract][Full Text] [Related]
12. Escherichia coli inorganic pyrophosphatase: site-directed mutagenesis of the metal binding sites. Avaeva S; Ignatov P; Kurilova S; Nazarova T; Rodina E; Vorobyeva N; Oganessyan V; Harutyunyan E FEBS Lett; 1996 Dec; 399(1-2):99-102. PubMed ID: 8980129 [TBL] [Abstract][Full Text] [Related]
13. The role of Asp42 in Escherichia coli inorganic pyrophosphatase functioning. Rodina EV; Vainonen YP; Vorobyeva NN; Kurilova SA; Nazarova TI; Avaeva SM Eur J Biochem; 2001 Jul; 268(13):3851-7. PubMed ID: 11432753 [TBL] [Abstract][Full Text] [Related]
14. Probing essential water in yeast pyrophosphatase by directed mutagenesis and fluoride inhibition measurements. Pohjanjoki P; Fabrichniy IP; Kasho VN; Cooperman BS; Goldman A; Baykov AA; Lahti R J Biol Chem; 2001 Jan; 276(1):434-41. PubMed ID: 11031269 [TBL] [Abstract][Full Text] [Related]
15. Substitutions of glycine residues Gly100 and Gly147 in conservative loops decrease rates of conformational rearrangements of Escherichia coli inorganic pyrophosphatase. Moiseev VM; Rodina EV; Kurilova SA; Vorobyeva NN; Nazarova TI; Avaeva SM Biochemistry (Mosc); 2005 Aug; 70(8):858-66. PubMed ID: 16212541 [TBL] [Abstract][Full Text] [Related]
17. Effects of replacement of prolines with alanines on the catalytic activity and thermostability of inorganic pyrophosphatase from thermophilic bacterium PS-3. Masuda H; Uchiumi T; Wada M; Ichiba T; Hachimori A J Biochem; 2002 Jan; 131(1):53-8. PubMed ID: 11754735 [TBL] [Abstract][Full Text] [Related]
18. Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. Nakanishi Y; Saijo T; Wada Y; Maeshima M J Biol Chem; 2001 Mar; 276(10):7654-60. PubMed ID: 11113147 [TBL] [Abstract][Full Text] [Related]
19. Functional complementation of yeast cytosolic pyrophosphatase by bacterial and plant H+-translocating pyrophosphatases. Perez-Castineira JR; Lopez-Marques RL; Villalba JM; Losada M; Serrano A Proc Natl Acad Sci U S A; 2002 Dec; 99(25):15914-9. PubMed ID: 12451180 [TBL] [Abstract][Full Text] [Related]
20. Dissociation of hexameric Escherichia coli inorganic pyrophosphatase into trimers on His-136-->Gln or His-140-->Gln substitution and its effect on enzyme catalytic properties. Baykov AA; Dudarenkov VY; Käpylä J; Salminen T; Hyytiä T; Kasho VN; Husgafvel S; Cooperman BS; Goldman A; Lahti R J Biol Chem; 1995 Dec; 270(51):30804-12. PubMed ID: 8530523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]