BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8706746)

  • 1. An essential lysine in the substrate-binding site of ornithine carbamoyltransferase.
    Valentini G; De Gregorio A; Di Salvo C; Grimm R; Bellocco E; Cuzzocrea G; Iadarola P
    Eur J Biochem; 1996 Jul; 239(2):397-402. PubMed ID: 8706746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active-site-directed inactivation of wheat-germ aspartate transcarbamoylase by pyridoxal 5'-phosphate.
    Cole SC; Yon RJ
    Biochem J; 1987 Dec; 248(2):403-8. PubMed ID: 3435454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and equilibrium of the inactivation of ornithine transcarbamylases by pyridoxal 5'-phosphate.
    Marshall M; Cohen PP
    J Biol Chem; 1977 Jun; 252(12):4276-86. PubMed ID: 16927
    [No Abstract]   [Full Text] [Related]  

  • 4. Catalytic site of rabbit glycogen synthase isozymes. Identification of an active site lysine close to the amino terminus of the subunit.
    Mahrenholz AM; Wang YH; Roach PJ
    J Biol Chem; 1988 Aug; 263(22):10561-7. PubMed ID: 3134350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of carbamoylphosphate induced conformational changes upon binding to human ornithine carbamoyltransferase.
    De Gregorio A; Risitano A; Capo C; Criniò C; Petruzzelli R; Desideri A
    Biochem Mol Biol Int; 1999 Jun; 47(6):965-70. PubMed ID: 10410242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible involvement of Lys603 from Escherichia coli glucosamine-6-phosphate synthase in the binding of its substrate fructose 6-phosphate.
    Golinelli-Pimpaneau B; Badet B
    Eur J Biochem; 1991 Oct; 201(1):175-82. PubMed ID: 1915361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing remote residues important for catalysis in Escherichia coli ornithine transcarbamoylase.
    Ngu L; Winters JN; Nguyen K; Ramos KE; DeLateur NA; Makowski L; Whitford PC; Ondrechen MJ; Beuning PJ
    PLoS One; 2020; 15(2):e0228487. PubMed ID: 32027716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study on liver ornithine carbamoyl transferase from a marine mammal Stenella and an elasmobranch Sphyrna zygaena.
    De Gregorio A; Valentini G; Bellocco E; Desideri A; Cuzzocrea G
    Comp Biochem Physiol B; 1993; 105(3-4):497-501. PubMed ID: 8365105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and properties of porcine liver ornithine transcarbamylase.
    Koger JB; Howell RG; Kelly M; Jones EE
    Arch Biochem Biophys; 1994 Mar; 309(2):293-9. PubMed ID: 8135541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of essential active-site residues in ornithine decarboxylase of Nicotiana glutinosa decarboxylating both L-ornithine and L-lysine.
    Lee YS; Cho YD
    Biochem J; 2001 Dec; 360(Pt 3):657-65. PubMed ID: 11736657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of modification of lysine residues of fructose-6-phosphate 2-kinase:fructose-2,6-bisphosphatase with pyridoxal 5'-phosphate.
    Kitajima S; Thomas H; Uyeda K
    J Biol Chem; 1985 Nov; 260(26):13995-4002. PubMed ID: 2997189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis of Escherichia coli ornithine transcarbamoylase: role of arginine-57 in substrate binding and catalysis.
    Kuo LC; Miller AW; Lee S; Kozuma C
    Biochemistry; 1988 Nov; 27(24):8823-32. PubMed ID: 3072022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cDNA cloning of two isoforms of ornithine carbamoyltransferase from Canavalia lineata leaves and the effect of site-directed mutagenesis of the carbamoyl phosphate binding site.
    Lee Y; Choi YA; Hwang ID; Kim SG; Kwon YM
    Plant Mol Biol; 2001 Aug; 46(6):651-60. PubMed ID: 11575720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The crystal structures of ornithine carbamoyltransferase from Mycobacterium tuberculosis and its ternary complex with carbamoyl phosphate and L-norvaline reveal the enzyme's catalytic mechanism.
    Sankaranarayanan R; Cherney MM; Cherney LT; Garen CR; Moradian F; James MN
    J Mol Biol; 2008 Jan; 375(4):1052-63. PubMed ID: 18062991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of pig M4 lactate dehydrogenase by pyridoxal 5'-phosphate. Demonstration of an essential lysine residue.
    Chen SS; Engel PC
    Biochem J; 1975 Jul; 149(1):107-13. PubMed ID: 1238085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active-site modification of mammalian DNA polymerase beta with pyridoxal 5'-phosphate: mechanism of inhibition and identification of lysine 71 in the deoxynucleoside triphosphate binding pocket.
    Basu A; Kedar P; Wilson SH; Modak MJ
    Biochemistry; 1989 Jul; 28(15):6305-9. PubMed ID: 2506925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical modification of adenylosuccinate synthetase from Escherichia coli by pyridoxal 5'-phosphate. Identification of an active site lysyl residue.
    Dong Q; Fromm HJ
    J Biol Chem; 1990 Apr; 265(11):6235-40. PubMed ID: 2108156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyridoxal 5'-phosphate, a fluorescent probe in the active site of aspartate transcarbamylase.
    Kempe TD; Stark GR
    J Biol Chem; 1975 Sep; 250(17):6861-9. PubMed ID: 239951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An essential lysyl residue (Lys208) in the substrate-binding site of porcine FAD-containing monooxygenase.
    Wu RF; Ichikawa Y
    Eur J Biochem; 1995 May; 229(3):749-53. PubMed ID: 7758472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allosteric regulation in Pseudomonas aeruginosa catabolic ornithine carbamoyltransferase revisited: association of concerted homotropic cooperative interactions and local heterotropic effects.
    Tricot C; Villeret V; Sainz G; Dideberg O; Stalon V
    J Mol Biol; 1998 Oct; 283(3):695-704. PubMed ID: 9784377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.