These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8707057)

  • 1. A transposon for green fluorescent protein transcriptional fusions: application for bacterial transport experiments.
    Burlage RS; Yang ZK; Mehlhorn T
    Gene; 1996; 173(1 Spec No):53-8. PubMed ID: 8707057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct detection and quantification of horizontal gene transfer by using flow cytometry and gfp as a reporter gene.
    Sørensen SJ; Sørensen AH; Hansen LH; Oregaard G; Veal D
    Curr Microbiol; 2003 Aug; 47(2):129-33. PubMed ID: 14506860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins.
    Lambertsen L; Sternberg C; Molin S
    Environ Microbiol; 2004 Jul; 6(7):726-32. PubMed ID: 15186351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green fluorescent protein-based reporter systems for genetic analysis of bacteria including monocopy applications.
    Suarez A; Güttler A; Strätz M; Staendner LH; Timmis KN; Guzmán CA
    Gene; 1997 Sep; 196(1-2):69-74. PubMed ID: 9322742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bi-functional gfp- and gusA-containing mini-Tn5 transposon derivatives for combined gene expression and bacterial localization studies.
    Xi C; Lambrecht M; Vanderleyden J; Michiels J
    J Microbiol Methods; 1999 Feb; 35(1):85-92. PubMed ID: 10076635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bifunctional transposon mini-Tn5gfp-km which can be used to select for promoter fusions and report gene expression levels in Agrobacterium tumefaciens.
    Tang X; Lu BF; Pan SQ
    FEMS Microbiol Lett; 1999 Oct; 179(1):37-42. PubMed ID: 10481083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and transposon vectors derived from satellite bacteriophage P4 for genetic manipulation of Pseudomonas and other gram-negative bacteria.
    Polissi A; Bertoni G; Acquati F; Dehò G
    Plasmid; 1992 Sep; 28(2):101-14. PubMed ID: 1329125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria.
    Andersen JB; Sternberg C; Poulsen LK; Bjorn SP; Givskov M; Molin S
    Appl Environ Microbiol; 1998 Jun; 64(6):2240-6. PubMed ID: 9603842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliable use of green fluorescent protein in fluorescent pseudomonads.
    Timms-Wilson TM; Bailey MJ
    J Microbiol Methods; 2001 Jul; 46(1):77-80. PubMed ID: 11412916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved GFP cloning cassette designed for prokaryotic transcriptional fusions.
    Miller WG; Lindow SE
    Gene; 1997 Jun; 191(2):149-53. PubMed ID: 9218713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of GFP vectors for use in gram-negative bacteria other than Escherichia coli.
    Matthysse AG; Stretton S; Dandie C; McClure NC; Goodman AE
    FEMS Microbiol Lett; 1996 Nov; 145(1):87-94. PubMed ID: 8931331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of bacterial growth activity in flow-chamber biofilms.
    Sternberg C; Christensen BB; Johansen T; Toftgaard Nielsen A; Andersen JB; Givskov M; Molin S
    Appl Environ Microbiol; 1999 Sep; 65(9):4108-17. PubMed ID: 10473423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatile biosensor vectors for detection and quantification of mercury.
    Hansen LH; Sørensen SJ
    FEMS Microbiol Lett; 2000 Dec; 193(1):123-7. PubMed ID: 11094290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interspecies cross-talk between co-cultured Pseudomonas putida and Escherichia coli.
    Molina-Santiago C; Udaondo Z; Cordero BF; Ramos JL
    Environ Microbiol Rep; 2017 Aug; 9(4):441-448. PubMed ID: 28585781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and dynamics of Pseudomonas sp. biofilms.
    Tolker-Nielsen T; Brinch UC; Ragas PC; Andersen JB; Jacobsen CS; Molin S
    J Bacteriol; 2000 Nov; 182(22):6482-9. PubMed ID: 11053394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromosomal insertion of the entire Escherichia coli lactose operon, into two strains of Pseudomonas, using a modified mini-Tn5 delivery system.
    Hansen LH; Sørensen SJ; Jensen LB
    Gene; 1997 Feb; 186(2):167-73. PubMed ID: 9074492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual labeling of Pseudomonas putida with fluorescent proteins for in situ monitoring of conjugal transfer of the TOL plasmid.
    Nancharaiah YV; Wattiau P; Wuertz S; Bathe S; Mohan SV; Wilderer PA; Hausner M
    Appl Environ Microbiol; 2003 Aug; 69(8):4846-52. PubMed ID: 12902279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green fluorescent protein as a novel marker and reporter system in Helicobacter sp.
    Josenhans C; Friedrich S; Suerbaum S
    FEMS Microbiol Lett; 1998 Apr; 161(2):263-73. PubMed ID: 9570118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Libraries of green fluorescent protein fusions generated by transposition in vitro.
    Merkulov GV; Boeke JD
    Gene; 1998 Nov; 222(2):213-22. PubMed ID: 9831655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of rpoS on the survival of a p-nitrophenol degrading Pseudomonas putida strain in planktonic and biofilm phases.
    Maki ML; Lawrence JR; Swerhone GD; Leung KT
    Can J Microbiol; 2009 Oct; 55(10):1176-86. PubMed ID: 19935890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.