These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 8707292)

  • 1. Characterization of double minute chromosomes' DNA content in a human high grade astrocytoma cell line by using comparative genomic hybridization and fluorescence in situ hybridization.
    Giollant M; Bertrand S; Verrelle P; Tchirkov A; du Manoir S; Ried T; Mornex F; Doré JF; Cremer T; Malet P
    Hum Genet; 1996 Sep; 98(3):265-70. PubMed ID: 8707292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of amplified DNA sequences on double minute chromosomes in a leukemic cell line KY821 by means of spectral karyotyping and comparative genomic hybridization.
    Ariyama Y; Sakabe T; Shinomiya T; Mori T; Fukuda Y; Inazawa J
    J Hum Genet; 1998; 43(3):187-90. PubMed ID: 9747033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytogenetic and molecular cytogenetic analyses in diffuse astrocytomas.
    Krupp W; Geiger K; Schober R; Siegert G; Froster UG
    Cancer Genet Cytogenet; 2004 Aug; 153(1):32-8. PubMed ID: 15325091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Detection of amplified DNA sequences by comparative genomic in situ hybridization with human glioma tumor DNA as probe].
    Schlegel J; Scherthan H; Arens N; Stumm G; Cremer T; Kiessling M
    Verh Dtsch Ges Pathol; 1994; 78():204-7. PubMed ID: 7533987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double minute chromosomes in acute myeloid leukemia and myelodysplastic syndrome: identification of new amplification regions by fluorescence in situ hybridization and spectral karyotyping.
    Sait SN; Qadir MU; Conroy JM; Matsui S; Nowak NJ; Baer MR
    Genes Chromosomes Cancer; 2002 May; 34(1):42-7. PubMed ID: 11921281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genomic hybridization of human malignant gliomas reveals multiple amplification sites and nonrandom chromosomal gains and losses.
    Schröck E; Thiel G; Lozanova T; du Manoir S; Meffert MC; Jauch A; Speicher MR; Nürnberg P; Vogel S; Jänisch W
    Am J Pathol; 1994 Jun; 144(6):1203-18. PubMed ID: 8203461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplified c-MYC sequences localized by fluorescence in-situ hybridization on double minute chromosomes in acute myeloid leukemias.
    Fugazza G; Bruzzone R; Puppo L; Patrone F; Sessarego M
    Leuk Res; 1997 Aug; 21(8):703-9. PubMed ID: 9379677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete cytogenetic characterization of the human breast cancer cell line MA11 combining G-banding, comparative genomic hybridization, multicolor fluorescence in situ hybridization, RxFISH, and chromosome-specific painting.
    Micci F; Teixeira MR; Heim S
    Cancer Genet Cytogenet; 2001 Nov; 131(1):25-30. PubMed ID: 11734314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosomal aberrations detected by comparative genomic hybridization (CGH) in human astrocytic tumors.
    Maruno M; Yoshimine T; Muhammad AK; Ninomiya H; Kato A; Hayakawa T
    Cancer Lett; 1999 Jan; 135(1):61-6. PubMed ID: 10077222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a subclass of double minute chromosomes containing centromere-associated DNA.
    Hammond DW; Hancock BW; Goyns MH
    Genes Chromosomes Cancer; 1994 Jun; 10(2):139-42. PubMed ID: 7520268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization.
    du Manoir S; Speicher MR; Joos S; Schröck E; Popp S; Döhner H; Kovacs G; Robert-Nicoud M; Lichter P; Cremer T
    Hum Genet; 1993 Feb; 90(6):590-610. PubMed ID: 8444465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of hematologic diseases using conventional karyotyping, fluorescence in situ hybridization (FISH), and comparative genomic hybridization (CGH).
    Wilkens L; Tchinda J; Burkhardt D; Nolte M; Werner M; Georgii A
    Hum Pathol; 1998 Aug; 29(8):833-9. PubMed ID: 9712425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA in situ hybridization (interphase cytogenetics) versus comparative genomic hybridization (CGH) in human cancer: detection of numerical and structural chromosome aberrations.
    Van Dekken H; Krijtenburg PJ; Alers JC
    Acta Histochem; 2000 Feb; 102(1):85-94. PubMed ID: 10726167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A complex rearrangement of chromosome 7 in human astrocytoma.
    Misra A; Pellarin M; Shapiro JR; Feuerstein BG
    Cancer Genet Cytogenet; 2004 Jun; 151(2):162-70. PubMed ID: 15172755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cytogenetic analysis of a nontumorigenic human breast epithelial cell line that eventually turns tumorigenic: validation of an analytical approach combining karyotyping, comparative genomic hybridization, chromosome painting, and single-locus fluorescence in situ hybridization.
    Nielsen KV; Niebuhr E; Ejlertsen B; Holstebroe S; Madsen MW; Briand P; Mouridsen HT; Bolund L
    Genes Chromosomes Cancer; 1997 Sep; 20(1):30-7. PubMed ID: 9290951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytogenetic analysis of non Hodgkin's lymphomas by ratio-painting and comparative genomic hybridization reveals unsuspected chromosomal abnormalities.
    Alqahtani MH; Hammond DW; Goepel JR; Goyns MH
    Leuk Lymphoma; 1999 Oct; 35(3-4):325-37. PubMed ID: 10706457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytogenetic findings in a case of pediatric glioblastoma.
    Sawyer JR; Swanson CM; Roloson GJ; Longee DC; Chadduck WM
    Cancer Genet Cytogenet; 1992 Nov; 64(1):75-9. PubMed ID: 1333880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined chromosome microdissection and comparative genomic hybridization detect multiple sites of amplification DNA in a human lung carcinoma cell line.
    Taguchi T; Cheng GZ; Bell DW; Balsara B; Liu Z; Siegfried JM; Testa JR
    Genes Chromosomes Cancer; 1997 Oct; 20(2):208-12. PubMed ID: 9331573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cytogenetic analysis of oral squamous cell carcinomas by comparative genomic hybridization, spectral karyotyping, and fluorescence in situ hybridization.
    Uchida K; Oga A; Okafuji M; Mihara M; Kawauchi S; Furuya T; Chochi Y; Ueyama Y; Sasaki K
    Cancer Genet Cytogenet; 2006 Jun; 167(2):109-16. PubMed ID: 16737909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of novel genomic aberrations in anaplastic astrocytomas by GTG-banding, SKY, locus-specific FISH, and high density SNP-array.
    Holland H; Ahnert P; Koschny R; Kirsten H; Bauer M; Schober R; Meixensberger J; Fritzsch D; Krupp W
    Pathol Res Pract; 2012 Jun; 208(6):325-30. PubMed ID: 22575435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.