These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8707723)

  • 41. Pretreatment of sugar cane bagasse for enhanced ruminal digestion.
    Deschamps FC; Ramos LP; Fontana JD
    Appl Biochem Biotechnol; 1996; 57-58():171-82. PubMed ID: 8669896
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cell wall composition of smooth bromegrass plants selected for divergent fiber concentration.
    Casler MD; Hatfield RD
    J Agric Food Chem; 2006 Oct; 54(21):8206-11. PubMed ID: 17032030
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lignin engineering to improve saccharification and digestibility in grasses.
    Halpin C
    Curr Opin Biotechnol; 2019 Apr; 56():223-229. PubMed ID: 30909119
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions.
    Grabber JH; Ralph J; Lapierre C; Barrière Y
    C R Biol; 2004 May; 327(5):455-65. PubMed ID: 15255476
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Different techniques to study rumen fermentation characteristics of maturing grass and grass silage.
    Cone JW; Van Gelder AH; Soliman IA; De Visser H; Van Vuuren AM
    J Dairy Sci; 1999 May; 82(5):957-66. PubMed ID: 10342234
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ruminal degradation of switchgrass, big bluestem, and smooth bromegrass leaf proteins.
    Redfearn DD; Moser LE; Waller SS; Klopfenstein TJ
    J Anim Sci; 1995 Feb; 73(2):598-605. PubMed ID: 7601796
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of alkaline hydrogen peroxide treatment of cotton and wheat straw on cellulose crystallinity and on composition and site and extent of disappearance of wheat straw cell wall phenolics and monosaccharides by sheep.
    Kerley MS; Garleb KA; Fahey GC; Berger LL; Moore KJ; Phillips GN; Gould JM
    J Anim Sci; 1988 Dec; 66(12):3235-44. PubMed ID: 3230083
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural invesiigations on the lignin-carbohydrate complexes of Lolium perenne.
    Morrison IM
    Biochem J; 1974 Apr; 139(1):197-204. PubMed ID: 4463941
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lignin-carbohydrate complexes in forages: structure and consequences in the ruminal degradation of cell-wall carbohydrates.
    Cornu A; Besle JM; Mosoni P; Grenet E
    Reprod Nutr Dev; 1994; 34(5):385-98. PubMed ID: 7802932
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Esterified phenolics of the cell walls of chufa (Cyperus esculentusL. ) tubers and their role in texture.
    Parker ML; Ng A; Smith AC; Waldron KW
    J Agric Food Chem; 2000 Dec; 48(12):6284-91. PubMed ID: 11141285
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coniferyl ferulate incorporation into lignin enhances the alkaline delignification and enzymatic degradation of cell walls.
    Grabber JH; Hatfield RD; Lu F; Ralph J
    Biomacromolecules; 2008 Sep; 9(9):2510-6. PubMed ID: 18712922
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Diet quality and ruminal digestion in beef cattle grazing midgrass prairie rangeland or plains bluestem pasture throughout the summer.
    Gunter SA; McCollum FT; Gillen RL; Krysl LJ
    J Anim Sci; 1995 Apr; 73(4):1174-86. PubMed ID: 7628962
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cell wall composition as a maize defense mechanism against corn borers.
    Barros-Rios J; Malvar RA; Jung HJ; Santiago R
    Phytochemistry; 2011 Apr; 72(4-5):365-71. PubMed ID: 21281952
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides.
    Yoshida M; Liu Y; Uchida S; Kawarada K; Ukagami Y; Ichinose H; Kaneko S; Fukuda K
    Biosci Biotechnol Biochem; 2008 Mar; 72(3):805-10. PubMed ID: 18323635
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Apoplastic pH and monolignol addition rate effects on lignin formation and cell wall degradability in maize.
    Grabber JH; Hatfield RD; Ralph J
    J Agric Food Chem; 2003 Aug; 51(17):4984-9. PubMed ID: 12903957
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparing corn types for differences in cell wall characteristics and p-coumaroylation of lignin.
    Hatfield RD; Chaptman AK
    J Agric Food Chem; 2009 May; 57(10):4243-9. PubMed ID: 19361157
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural and chemical properties of grass lignocelluloses related to conversion for biofuels.
    Anderson WF; Akin DE
    J Ind Microbiol Biotechnol; 2008 May; 35(5):355-366. PubMed ID: 18188624
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The digestion of total and cell wall monosaccharides of alfalfa by sheep.
    Ben-Ghedalia D; Miron J
    J Nutr; 1984 May; 114(5):880-7. PubMed ID: 6726458
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genetic variations of cell wall digestibility related traits in floral stems of Arabidopsis thaliana accessions as a basis for the improvement of the feeding value in maize and forage plants.
    Barrière Y; Denoue D; Briand M; Simon M; Jouanin L; Durand-Tardif M
    Theor Appl Genet; 2006 Jun; 113(1):163-75. PubMed ID: 16783597
    [TBL] [Abstract][Full Text] [Related]  

  • 60. G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed.
    Pei Y; Li Y; Zhang Y; Yu C; Fu T; Zou J; Tu Y; Peng L; Chen P
    Bioresour Technol; 2016 Mar; 203():325-33. PubMed ID: 26748046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.