These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8707723)

  • 61. The chemical composition of the cell wall of Chlamydomonas gymnogama and the concept of a plant cell wall protein.
    Miller DH; Mellman IS; Lamport DT; Miller M
    J Cell Biol; 1974 Nov; 63(2 Pt 1):420-9. PubMed ID: 4607708
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effect of reduced ferulate-mediated lignin/arabinoxylan cross-linking in corn silage on feed intake, digestibility, and milk production.
    Jung HG; Mertens DR; Phillips RL
    J Dairy Sci; 2011 Oct; 94(10):5124-37. PubMed ID: 21943763
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus.
    Li F; Ren S; Zhang W; Xu Z; Xie G; Chen Y; Tu Y; Li Q; Zhou S; Li Y; Tu F; Liu L; Wang Y; Jiang J; Qin J; Li S; Li Q; Jing HC; Zhou F; Gutterson N; Peng L
    Bioresour Technol; 2013 Feb; 130():629-37. PubMed ID: 23334020
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Urea metabolism in beef steers grazing Bermudagrass, Caucasian bluestem, or gamagrass pastures varying in plant morphology, protein content, and protein composition.
    Huntington GB; Burns JC; Archibeque SL
    J Anim Sci; 2007 Aug; 85(8):1997-2004. PubMed ID: 17431040
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Changes in composition and structure of wheat bran resulting from the action of human faecal bacteria in vitro.
    Stevens BJ; Selvendran RR
    Carbohydr Res; 1988 Dec; 183(2):311-9. PubMed ID: 2850867
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effect of intake level and alfalfa substitution for grass hay on ruminal kinetics of fiber digestion and particle passage in beef cattle.
    Bhatti SA; Bowman JG; Firkins JL; Grove AV; Hunt CW
    J Anim Sci; 2008 Jan; 86(1):134-45. PubMed ID: 17940159
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The lignin fraction of plant cell walls.
    Hartley RD
    Am J Clin Nutr; 1978 Oct; 31(10 Suppl):S90-S93. PubMed ID: 707399
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Compositional analysis of Chinese water chestnut (Eleocharis dulcis) cell-wall material from parenchyma, epidermis, and subepidermal tissues.
    Grassby T; Jay AJ; Merali Z; Parker ML; Parr AJ; Faulds CB; Waldron KW
    J Agric Food Chem; 2013 Oct; 61(40):9680-8. PubMed ID: 24066627
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Grass lignocellulose: strategies to overcome recalcitrance.
    Akin DE
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):3-15. PubMed ID: 18478372
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Extractibility of structural carbohydrates and lignin deposition in maturing alfalfa internodes.
    Vallet C; Chabbert B; Czaninski Y; Lemaire G; Monties B
    Int J Biol Macromol; 1997 Aug; 21(1-2):201-6. PubMed ID: 9283037
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Xylooligosaccharides production from Arundo donax.
    Caparrós S; Garrote G; Ariza J; Díaz MJ; López F
    J Agric Food Chem; 2007 Jul; 55(14):5536-43. PubMed ID: 17567138
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the beta-position, in grass cell walls.
    Lam TB; Kadoya K; Iiyama K
    Phytochemistry; 2001 Jul; 57(6):987-92. PubMed ID: 11423145
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of delignification upon in vitro digestion of forage cellulose.
    Darcy BK; Belyea RL
    J Anim Sci; 1980 Oct; 51(4):798-803. PubMed ID: 7462109
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Lignin composition is more important than content for maize stem cell wall degradation.
    He Y; Mouthier TM; Kabel MA; Dijkstra J; Hendriks WH; Struik PC; Cone JW
    J Sci Food Agric; 2018 Jan; 98(1):384-390. PubMed ID: 28833149
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method.
    Fukushima RS; Hatfield RD
    J Agric Food Chem; 2001 Jul; 49(7):3133-9. PubMed ID: 11453742
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fermentability of eastern gamagrass, big bluestem and sand bluestem grown across a wide variety of environments.
    Weimer PJ; Springer TL
    Bioresour Technol; 2007 May; 98(8):1615-21. PubMed ID: 16962323
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples.
    Fukushima RS; Hatfield RD
    J Agric Food Chem; 2004 Jun; 52(12):3713-20. PubMed ID: 15186087
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of maturity at harvest on yield, chemical composition, and in situ degradability for annual cereals used for swath grazing.
    Rosser CL; Górka P; Beattie AD; Block HC; McKinnon JJ; Lardner HA; Penner GB
    J Anim Sci; 2013 Aug; 91(8):3815-26. PubMed ID: 23658356
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Characterization of the structural and dynamic changes of cell wall obtained by ultrasound-water and ultrasound-alkali treatments.
    Qian J; Zhao F; Gao J; Qu L; He Z; Yi S
    Ultrason Sonochem; 2021 Sep; 77():105672. PubMed ID: 34330083
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Physicochemical characteristics of onion (Allium cepa L.) tissues.
    Ng A; Parker ML; Parr AJ; Saunders PK; Smith AC; Waldron KW
    J Agric Food Chem; 2000 Nov; 48(11):5612-7. PubMed ID: 11087527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.