These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 8707790)

  • 41. Contribution of individual structural components in determining the zero-stress state in small arteries.
    Zeller PJ; Skalak TC
    J Vasc Res; 1998; 35(1):8-17. PubMed ID: 9482691
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Theoretical and experimental study of growth and remodeling in the developing heart.
    Taber LA; Chabert S
    Biomech Model Mechanobiol; 2002 Jun; 1(1):29-43. PubMed ID: 14586705
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of shear stress on solitary waves in arteries.
    Demiray H
    Bull Math Biol; 1997 Sep; 59(5):993-1012. PubMed ID: 9281908
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability.
    Holzapfel GA; Gasser TC; Ogden RW
    J Biomech Eng; 2004 Apr; 126(2):264-75. PubMed ID: 15179858
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Changes in the rheological properties of blood vessel tissue remodeling in the course of development of diabetes.
    Liu SQ; Fung YC
    Biorheology; 1992; 29(5-6):443-57. PubMed ID: 1306372
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pulsatile arterial wall-blood flow interaction with wall pre-stress computed using an inverse algorithm.
    Das A; Paul A; Taylor MD; Banerjee RK
    Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S18. PubMed ID: 25603022
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transmural pressure and axial loading interactively regulate arterial remodeling ex vivo.
    Lawrence AR; Gooch KJ
    Am J Physiol Heart Circ Physiol; 2009 Jul; 297(1):H475-84. PubMed ID: 19465545
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Arterial elastance and wave reflection augmentation of systolic blood pressure: deleterious effects and implications for therapy.
    Nichols WW; Edwards DG
    J Cardiovasc Pharmacol Ther; 2001 Jan; 6(1):5-21. PubMed ID: 11452332
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Duration of no-load state affects opening angle of porcine coronary arteries.
    Rehal D; Guo X; Lu X; Kassab GS
    Am J Physiol Heart Circ Physiol; 2006 May; 290(5):H1871-8. PubMed ID: 16339834
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A quasi-linear constitutive relation for arterial wall materials.
    Demiray H
    J Biomech; 1996 Aug; 29(8):1011-4. PubMed ID: 8817367
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Branch angle and flow into a symmetric bifurcation.
    Tadjfar M
    J Biomech Eng; 2004 Aug; 126(4):516-8. PubMed ID: 15543870
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents.
    Alford PW; Humphrey JD; Taber LA
    Biomech Model Mechanobiol; 2008 Aug; 7(4):245-62. PubMed ID: 17786493
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relationship between hypertension, hypertrophy, and opening angle of zero-stress state of arteries following aortic constriction.
    Liu SQ; Fung YC
    J Biomech Eng; 1989 Nov; 111(4):325-35. PubMed ID: 2486372
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The numerical analysis of fluid-solid interactions for blood flow in arterial structures. Part 2: Development of coupled fluid-solid algorithms.
    Zhao SZ; Xu XY; Collins MW
    Proc Inst Mech Eng H; 1998; 212(4):241-52. PubMed ID: 9769692
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of elastic nonlinearity on arterial anastomotic compliance.
    Schajer GS; Green SI; Davis AP; Hsiang YN
    J Biomech Eng; 1996 Nov; 118(4):445-51. PubMed ID: 8950647
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impedance and wave reflection in arterial system: simulation with geometrically tapered T-tubes.
    Chang KC; Tseng YZ; Kuo TS; Chen HI
    Med Biol Eng Comput; 1995 Sep; 33(5):652-60. PubMed ID: 8523906
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Steady flow and wall compression in stenotic arteries: a three-dimensional thick-wall model with fluid-wall interactions.
    Tang D; Yang C; Kobayashi S; Ku DN
    J Biomech Eng; 2001 Dec; 123(6):548-57. PubMed ID: 11783725
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A model of stress-induced geometrical remodeling of vessel segments adjacent to stents and artery/graft anastomoses.
    Rachev A; Manoach E; Berry J; Moore JE
    J Theor Biol; 2000 Oct; 206(3):429-43. PubMed ID: 10988028
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries.
    Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M
    Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Numerical study of nonlinear pulsatile flow in S-shaped curved arteries.
    Qiao AK; Guo XL; Wu SG; Zeng YJ; Xu XH
    Med Eng Phys; 2004 Sep; 26(7):545-52. PubMed ID: 15271282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.