These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 8707797)

  • 1. Three-dimensional videography of swimming with panning periscopes.
    Yanai T; Hay JG; Gerot JT
    J Biomech; 1996 May; 29(5):673-8. PubMed ID: 8707797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A panning DLT procedure for three-dimensional videography.
    Yu B; Koh TJ; Hay JG
    J Biomech; 1993 Jun; 26(6):741-51. PubMed ID: 8514817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction accuracy in underwater three-dimensional kinematic analysis.
    Gourgoulis V; Aggeloussis N; Kasimatis P; Vezos N; Boli A; Mavromatis G
    J Sci Med Sport; 2008 Apr; 11(2):90-5. PubMed ID: 17544326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.
    Bernardina GR; Cerveri P; Barros RM; Marins JC; Silvatti AP
    PLoS One; 2016; 11(8):e0160490. PubMed ID: 27513846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-air versus underwater comparison of 3D reconstruction accuracy using action sport cameras.
    Bernardina GR; Cerveri P; Barros RM; Marins JC; Silvatti AP
    J Biomech; 2017 Jan; 51():77-82. PubMed ID: 27974154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method to minimise error in 2D-DLT reconstruction of non-planar markers filmed with a moving camera.
    Holden-Douilly L; Pourcelot P; Chateau H; Falala S; Crevier-Denoix N
    Comput Methods Biomech Biomed Engin; 2013; 16(9):929-36. PubMed ID: 22225468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction Accuracy Assessment of Surface and Underwater 3D Motion Analysis: A New Approach.
    de Jesus K; de Jesus K; Figueiredo P; Vilas-Boas JP; Fernandes RJ; Machado LJ
    Comput Math Methods Med; 2015; 2015():269264. PubMed ID: 26175796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of light refraction on the accuracy of camera calibration and reconstruction in underwater motion analysis.
    Kwon YH; Casebolt JB
    Sports Biomech; 2006 Jul; 5(2):315-40. PubMed ID: 16939159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation on the accuracy of three-dimensional space reconstruction using the direct linear transformation technique.
    Chen L; Armstrong CW; Raftopoulos DD
    J Biomech; 1994 Apr; 27(4):493-500. PubMed ID: 8188729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of light refraction on the accuracy of camera calibration and reconstruction in underwater motion analysis.
    Kwon YH; Casebolt JB
    Sports Biomech; 2006 Jan; 5(1):95-120. PubMed ID: 16521625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refraction corrected calibration for aquatic locomotion research: application of Snell's law improves spatial accuracy.
    Henrion S; Spoor CW; Pieters RP; Müller UK; van Leeuwen JL
    Bioinspir Biomim; 2015 Jul; 10(4):046009. PubMed ID: 26151159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating propulsive forces in swimming from three-dimensional kinematic data.
    Payton CJ; Bartlett RM
    J Sports Sci; 1995 Dec; 13(6):447-54. PubMed ID: 8850570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of different camera calibration approaches for underwater applications.
    Silvatti AP; Dias FA; Cerveri P; Barros RM
    J Biomech; 2012 Apr; 45(6):1112-6. PubMed ID: 22284990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional videography using omnidirectional cameras: An approach inspired by the direct linear transformation method.
    Nagano A
    J Biomech; 2021 Nov; 128():110722. PubMed ID: 34509908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional cinematography with control object of unknown shape.
    Dapena J; Harman EA; Miller JA
    J Biomech; 1982; 15(1):11-9. PubMed ID: 7061524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calibration of time-of-flight cameras for accurate intraoperative surface reconstruction.
    Mersmann S; Seitel A; Erz M; Jähne B; Nickel F; Mieth M; Mehrabi A; Maier-Hein L
    Med Phys; 2013 Aug; 40(8):082701. PubMed ID: 23927355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative underwater 3D motion analysis using submerged video cameras: accuracy analysis and trajectory reconstruction.
    Silvatti AP; Cerveri P; Telles T; Dias FA; Baroni G; Barros RM
    Comput Methods Biomech Biomed Engin; 2013; 16(11):1240-8. PubMed ID: 22435960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of two different sized hand paddles on the front crawl stroke kinematics.
    Gourgoulis V; Aggeloussis N; Vezos N; Mavromatis G
    J Sports Med Phys Fitness; 2006 Jun; 46(2):232-7. PubMed ID: 16823353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic calibration of an arbitrarily-set near-infrared camera for patient surface respiratory monitoring.
    Saito A; Ohashi A; Nishio T; Hashimoto D; Maekawa H; Murakami Y; Ozawa S; Suitani M; Tsuneda M; Ikenaga K; Nagata Y
    Med Phys; 2019 Mar; 46(3):1163-1174. PubMed ID: 30620094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous in-air and underwater 3D kinematic analysis of swimmers: Feasibility and reliability of action sport cameras.
    Bernardina GRD; de Andrade AGP; Monnet T; Cerveri P; Silvatti AP
    J Biomech; 2024 May; 168():112078. PubMed ID: 38663110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.