These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 8708572)

  • 1. Design of the oxygen and substrate pathways. II. Defining the upper limits of carbohydrate and fat oxidation.
    Roberts TJ; Weber JM; Hoppeler H; Weibel ER; Taylor CR
    J Exp Biol; 1996 Aug; 199(Pt 8):1651-8. PubMed ID: 8708572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of the oxygen and substrate pathways. IV. Partitioning energy provision from fatty acids.
    Weber JM; Brichon G; Zwingelstein G; McClelland G; Saucedo C; Weibel ER; Taylor CR
    J Exp Biol; 1996 Aug; 199(Pt 8):1667-74. PubMed ID: 8708574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of the oxygen and substrate pathways. VII. Different structural limits for oxygen and substrate supply to muscle mitochondria.
    Weibel ER; Taylor CR; Weber JM; Vock R; Roberts TJ; Hoppeler H
    J Exp Biol; 1996 Aug; 199(Pt 8):1699-709. PubMed ID: 8708577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of the oxygen and substrate pathways. III. Partitioning energy provision from carbohydrates.
    Weber JM; Roberts TJ; Vock R; Weibel ER; Taylor CR
    J Exp Biol; 1996 Aug; 199(Pt 8):1659-66. PubMed ID: 8708573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of the oxygen and substrate pathways. I. Model and strategy to test symmorphosis in a network structure.
    Taylor CR; Weibel ER; Weber JM; Vock R; Hoppeler H; Roberts TJ; Brichon G
    J Exp Biol; 1996 Aug; 199(Pt 8):1643-9. PubMed ID: 8708571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of the oxygen and substrate pathways. VI. structural basis of intracellular substrate supply to mitochondria in muscle cells.
    Vock R; Hoppeler H; Claassen H; Wu DX; Billeter R; Weber JM; Taylor CR; Weibel ER
    J Exp Biol; 1996 Aug; 199(Pt 8):1689-97. PubMed ID: 8708576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of the oxygen and substrate pathways. V. Structural basis of vascular substrate supply to muscle cells.
    Vock R; Weibel ER; Hoppeler H; Ordway G; Weber JM; Taylor CR
    J Exp Biol; 1996 Aug; 199(Pt 8):1675-88. PubMed ID: 8708575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of indirect calorimetry and a new breath 13C/12C ratio method during strenuous exercise.
    Romijn JA; Coyle EF; Hibbert J; Wolfe RR
    Am J Physiol; 1992 Jul; 263(1 Pt 1):E64-71. PubMed ID: 1636700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of pre-exercise carbohydrate feedings on the intensity that elicits maximal fat oxidation.
    Achten J; Jeukendrup AE
    J Sports Sci; 2003 Dec; 21(12):1017-24. PubMed ID: 14748459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mismatch between lipid mobilization and oxidation: glycerol kinetics in running African goats.
    Weber JM; Roberts TJ; Taylor CR
    Am J Physiol; 1993 Apr; 264(4 Pt 2):R797-803. PubMed ID: 8476123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of high-fat and high-carbohydrate diets on pulmonary O2 uptake kinetics during the transition to moderate-intensity exercise.
    Raper JA; Love LK; Paterson DH; Peters SJ; Heigenhauser GJ; Kowalchuk JM
    J Appl Physiol (1985); 2014 Dec; 117(11):1371-9. PubMed ID: 25277736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of a 1-hour single bout of moderate-intensity exercise on fat oxidation kinetics.
    Chenevière X; Borrani F; Ebenegger V; Gojanovic B; Malatesta D
    Metabolism; 2009 Dec; 58(12):1778-86. PubMed ID: 19632694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of elevated FFA on carbohydrate and lipid oxidation during prolonged exercise in humans.
    Ravussin E; Bogardus C; Scheidegger K; LaGrange B; Horton ED; Horton ES
    J Appl Physiol (1985); 1986 Mar; 60(3):893-900. PubMed ID: 3514572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postexercise fat oxidation: effect of exercise duration, intensity, and modality.
    Warren A; Howden EJ; Williams AD; Fell JW; Johnson NA
    Int J Sport Nutr Exerc Metab; 2009 Dec; 19(6):607-23. PubMed ID: 20175430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Higher fat oxidation in running than cycling at the same exercise intensities.
    Capostagno B; Bosch A
    Int J Sport Nutr Exerc Metab; 2010 Feb; 20(1):44-55. PubMed ID: 20190351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Similar substrate oxidation rates in concentric and eccentric cycling matched for aerobic power output.
    Isacco L; Ritter O; Tordi N; Laroche D; Degano B; Bouhaddi M; Rakobowchuk M; Mourot L
    Appl Physiol Nutr Metab; 2016 Nov; 41(11):1204-1207. PubMed ID: 27769148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of work and recovery duration on skeletal muscle oxygenation and fuel use during sustained intermittent exercise.
    Christmass MA; Dawson B; Arthur PG
    Eur J Appl Physiol Occup Physiol; 1999 Oct; 80(5):436-47. PubMed ID: 10502077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy reliance on carbohydrate across a wide range of exercise intensities during voluntary arm ergometry in persons with paraplegia.
    Jacobs KA; Burns P; Kressler J; Nash MS
    J Spinal Cord Med; 2013 Sep; 36(5):427-35. PubMed ID: 23941790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does skeletal muscle carnitine availability influence fuel selection during exercise?
    Stephens FB
    Proc Nutr Soc; 2018 Feb; 77(1):11-19. PubMed ID: 29037265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gender-based differences in substrate use during exercise at a self-selected pace.
    Dasilva SG; Guidetti L; Buzzachera CF; Elsangedy HM; Krinski K; De Campos W; Goss FL; Baldari C
    J Strength Cond Res; 2011 Sep; 25(9):2544-51. PubMed ID: 21747295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.