These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8708574)

  • 1. Design of the oxygen and substrate pathways. IV. Partitioning energy provision from fatty acids.
    Weber JM; Brichon G; Zwingelstein G; McClelland G; Saucedo C; Weibel ER; Taylor CR
    J Exp Biol; 1996 Aug; 199(Pt 8):1667-74. PubMed ID: 8708574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of the oxygen and substrate pathways. III. Partitioning energy provision from carbohydrates.
    Weber JM; Roberts TJ; Vock R; Weibel ER; Taylor CR
    J Exp Biol; 1996 Aug; 199(Pt 8):1659-66. PubMed ID: 8708573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of the oxygen and substrate pathways. VII. Different structural limits for oxygen and substrate supply to muscle mitochondria.
    Weibel ER; Taylor CR; Weber JM; Vock R; Roberts TJ; Hoppeler H
    J Exp Biol; 1996 Aug; 199(Pt 8):1699-709. PubMed ID: 8708577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of the oxygen and substrate pathways. II. Defining the upper limits of carbohydrate and fat oxidation.
    Roberts TJ; Weber JM; Hoppeler H; Weibel ER; Taylor CR
    J Exp Biol; 1996 Aug; 199(Pt 8):1651-8. PubMed ID: 8708572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of the oxygen and substrate pathways. VI. structural basis of intracellular substrate supply to mitochondria in muscle cells.
    Vock R; Hoppeler H; Claassen H; Wu DX; Billeter R; Weber JM; Taylor CR; Weibel ER
    J Exp Biol; 1996 Aug; 199(Pt 8):1689-97. PubMed ID: 8708576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of the oxygen and substrate pathways. V. Structural basis of vascular substrate supply to muscle cells.
    Vock R; Weibel ER; Hoppeler H; Ordway G; Weber JM; Taylor CR
    J Exp Biol; 1996 Aug; 199(Pt 8):1675-88. PubMed ID: 8708575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of the oxygen and substrate pathways. I. Model and strategy to test symmorphosis in a network structure.
    Taylor CR; Weibel ER; Weber JM; Vock R; Hoppeler H; Roberts TJ; Brichon G
    J Exp Biol; 1996 Aug; 199(Pt 8):1643-9. PubMed ID: 8708571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mismatch between lipid mobilization and oxidation: glycerol kinetics in running African goats.
    Weber JM; Roberts TJ; Taylor CR
    Am J Physiol; 1993 Apr; 264(4 Pt 2):R797-803. PubMed ID: 8476123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramyocellular lipids form an important substrate source during moderate intensity exercise in endurance-trained males in a fasted state.
    van Loon LJ; Koopman R; Stegen JH; Wagenmakers AJ; Keizer HA; Saris WH
    J Physiol; 2003 Dec; 553(Pt 2):611-25. PubMed ID: 14514877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased capacity for circulatory fatty acid transport in a highly aerobic mammal.
    McClelland G; Zwingelstein G; Taylor CR; Weber JM
    Am J Physiol; 1994 Apr; 266(4 Pt 2):R1280-6. PubMed ID: 8184973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of acute and chronic exercise on fat metabolism.
    Martin WH
    Exerc Sport Sci Rev; 1996; 24():203-31. PubMed ID: 8744251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of obesity on substrate utilization during exercise.
    Goodpaster BH; Wolfe RR; Kelley DE
    Obes Res; 2002 Jul; 10(7):575-84. PubMed ID: 12105277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of gender on lipid kinetics during endurance exercise of moderate intensity in untrained subjects.
    Mittendorfer B; Horowitz JF; Klein S
    Am J Physiol Endocrinol Metab; 2002 Jul; 283(1):E58-65. PubMed ID: 12067843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts.
    Saddik M; Lopaschuk GD
    J Biol Chem; 1991 May; 266(13):8162-70. PubMed ID: 1902472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of intramuscular triglyceride fatty acids in exercising humans.
    Guo Z; Burguera B; Jensen MD
    J Appl Physiol (1985); 2000 Nov; 89(5):2057-64. PubMed ID: 11053362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increase in fat oxidation on a high-fat diet is accompanied by an increase in triglyceride-derived fatty acid oxidation.
    Schrauwen P; Wagenmakers AJ; van Marken Lichtenbelt WD; Saris WH; Westerterp KR
    Diabetes; 2000 Apr; 49(4):640-6. PubMed ID: 10871203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathways for oxidative fuel provision to working muscles: ecological consequences of maximal supply limitations.
    Weber JM
    Experientia; 1992 Jun; 48(6):557-64. PubMed ID: 1612135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-altitude acclimation increases the triacylglycerol/fatty acid cycle at rest and during exercise.
    McClelland GB; Hochachka PW; Reidy SP; Weber JM
    Am J Physiol Endocrinol Metab; 2001 Sep; 281(3):E537-44. PubMed ID: 11500309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy reliance on carbohydrate across a wide range of exercise intensities during voluntary arm ergometry in persons with paraplegia.
    Jacobs KA; Burns P; Kressler J; Nash MS
    J Spinal Cord Med; 2013 Sep; 36(5):427-35. PubMed ID: 23941790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fat metabolism during exercise: a review. Part I: fatty acid mobilization and muscle metabolism.
    Jeukendrup AE; Saris WH; Wagenmakers AJ
    Int J Sports Med; 1998 May; 19(4):231-44. PubMed ID: 9657362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.