These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
527 related articles for article (PubMed ID: 8709149)
1. Cooperative and anticooperative effects in binding of the first and second plasmid Osym operators to a LacI tetramer: evidence for contributions of non-operator DNA binding by wrapping and looping. Levandoski MM; Tsodikov OV; Frank DE; Melcher SE; Saecker RM; Record MT J Mol Biol; 1996 Aug; 260(5):697-717. PubMed ID: 8709149 [TBL] [Abstract][Full Text] [Related]
2. Wrapping of flanking non-operator DNA in lac repressor-operator complexes: implications for DNA looping. Tsodikov OV; Saecker RM; Melcher SE; Levandoski MM; Frank DE; Capp MW; Record MT J Mol Biol; 1999 Dec; 294(3):639-55. PubMed ID: 10610786 [TBL] [Abstract][Full Text] [Related]
3. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site. Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamic stoichiometries of participation of water, cations and anions in specific and non-specific binding of lac repressor to DNA. Possible thermodynamic origins of the "glutamate effect" on protein-DNA interactions. Ha JH; Capp MW; Hohenwalter MD; Baskerville M; Record MT J Mol Biol; 1992 Nov; 228(1):252-64. PubMed ID: 1447786 [TBL] [Abstract][Full Text] [Related]
6. Lac repressor-operator interaction: N-terminal peptide backbone 1H and 15N chemical shifts upon complex formation with DNA. Artz PG; Valentine KG; Opella SJ; Lu P J Mol Recognit; 1996; 9(1):13-22. PubMed ID: 8723315 [TBL] [Abstract][Full Text] [Related]
7. Origin of the asymmetrical contact between lac repressor and lac operator DNA. Rastinejad F; Artz P; Lu P J Mol Biol; 1993 Oct; 233(3):389-99. PubMed ID: 8411152 [TBL] [Abstract][Full Text] [Related]
8. Interlocking of plasmid DNAs due to Lac repressor-operator interaction. Wu HY; Lau K; Liu LF J Mol Biol; 1992 Dec; 228(4):1104-14. PubMed ID: 1335514 [TBL] [Abstract][Full Text] [Related]
9. Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor--operator interaction: kinetic measurements and conclusions. Winter RB; Berg OG; von Hippel PH Biochemistry; 1981 Nov; 20(24):6961-77. PubMed ID: 7032584 [TBL] [Abstract][Full Text] [Related]
10. Compensating effects of opposing changes in putrescine (2+) and K+ concentrations on lac repressor-lac operator binding: in vitro thermodynamic analysis and in vivo relevance. Capp MW; Cayley DS; Zhang W; Guttman HJ; Melcher SE; Saecker RM; Anderson CF; Record MT J Mol Biol; 1996 Apr; 258(1):25-36. PubMed ID: 8613989 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamics of E. coli cytidine repressor interactions with DNA: distinct modes of binding to different operators suggests a role in differential gene regulation. Tretyachenko-Ladokhina V; Ross JB; Senear DF J Mol Biol; 2002 Feb; 316(3):531-46. PubMed ID: 11866516 [TBL] [Abstract][Full Text] [Related]
12. DNA looping and lac repressor-CAP interaction. Fried MG; Hudson JM Science; 1996 Dec; 274(5294):1930-1; author reply 1931-2. PubMed ID: 8984648 [No Abstract] [Full Text] [Related]
13. DNA looping in cellular repression of transcription of the galactose operon. Mandal N; Su W; Haber R; Adhya S; Echols H Genes Dev; 1990 Mar; 4(3):410-8. PubMed ID: 2186968 [TBL] [Abstract][Full Text] [Related]
14. Escherichia coli lac repressor-lac operator interaction and the influence of allosteric effectors. Horton N; Lewis M; Lu P J Mol Biol; 1997 Jan; 265(1):1-7. PubMed ID: 8995519 [TBL] [Abstract][Full Text] [Related]
15. Operator DNA sequence variation enhances high affinity binding by hinge helix mutants of lactose repressor protein. Falcon CM; Matthews KS Biochemistry; 2000 Sep; 39(36):11074-83. PubMed ID: 10998245 [TBL] [Abstract][Full Text] [Related]
16. Flexibility in repression and cooperativity by KorB of broad host range IncP-1 plasmid RK2. Bingle LE; Macartney DP; Fantozzi A; Manzoor SE; Thomas CM J Mol Biol; 2005 Jun; 349(2):302-16. PubMed ID: 15890197 [TBL] [Abstract][Full Text] [Related]
17. Use of urea and glycine betaine to quantify coupled folding and probe the burial of DNA phosphates in lac repressor-lac operator binding. Hong J; Capp MW; Saecker RM; Record MT Biochemistry; 2005 Dec; 44(51):16896-911. PubMed ID: 16363803 [TBL] [Abstract][Full Text] [Related]
19. In vivo thermodynamic analysis of repression with and without looping in lac constructs. Estimates of free and local lac repressor concentrations and of physical properties of a region of supercoiled plasmid DNA in vivo. Law SM; Bellomy GR; Schlax PJ; Record MT J Mol Biol; 1993 Mar; 230(1):161-73. PubMed ID: 8450533 [TBL] [Abstract][Full Text] [Related]
20. Proteins mediating DNA loops effectively block transcription. Vörös Z; Yan Y; Kovari DT; Finzi L; Dunlap D Protein Sci; 2017 Jul; 26(7):1427-1438. PubMed ID: 28295806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]