These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
484 related articles for article (PubMed ID: 8709151)
1. Identification of putative active-site residues in the DNase domain of colicin E9 by random mutagenesis. Garinot-Schneider C; Pommer AJ; Moore GR; Kleanthous C; James R J Mol Biol; 1996 Aug; 260(5):731-42. PubMed ID: 8709151 [TBL] [Abstract][Full Text] [Related]
2. Dual recognition and the role of specificity-determining residues in colicin E9 DNase-immunity protein interactions. Li W; Hamill SJ; Hemmings AM; Moore GR; James R; Kleanthous C Biochemistry; 1998 Aug; 37(34):11771-9. PubMed ID: 9718299 [TBL] [Abstract][Full Text] [Related]
3. Specificity in protein-protein recognition: conserved Im9 residues are the major determinants of stability in the colicin E9 DNase-Im9 complex. Wallis R; Leung KY; Osborne MJ; James R; Moore GR; Kleanthous C Biochemistry; 1998 Jan; 37(2):476-85. PubMed ID: 9425068 [TBL] [Abstract][Full Text] [Related]
4. Structural dynamics of the membrane translocation domain of colicin E9 and its interaction with TolB. Collins ES; Whittaker SB; Tozawa K; MacDonald C; Boetzel R; Penfold CN; Reilly A; Clayden NJ; Osborne MJ; Hemmings AM; Kleanthous C; James R; Moore GR J Mol Biol; 2002 May; 318(3):787-804. PubMed ID: 12054823 [TBL] [Abstract][Full Text] [Related]
5. Clusters in an intrinsically disordered protein create a protein-binding site: the TolB-binding region of colicin E9. Tozawa K; Macdonald CJ; Penfold CN; James R; Kleanthous C; Clayden NJ; Moore GR Biochemistry; 2005 Aug; 44(34):11496-507. PubMed ID: 16114886 [TBL] [Abstract][Full Text] [Related]
6. Distinct regions of EBV DNase are required for nuclease and DNA binding activities. Liu MT; Hsu TY; Lin SF; Seow SV; Liu MY; Chen JY; Yang CS Virology; 1998 Mar; 242(1):6-13. PubMed ID: 9501034 [TBL] [Abstract][Full Text] [Related]
7. Specificity in protein-protein interactions: the structural basis for dual recognition in endonuclease colicin-immunity protein complexes. Kühlmann UC; Pommer AJ; Moore GR; James R; Kleanthous C J Mol Biol; 2000 Sep; 301(5):1163-78. PubMed ID: 10966813 [TBL] [Abstract][Full Text] [Related]
8. Highly discriminating protein-protein interaction specificities in the context of a conserved binding energy hotspot. Li W; Keeble AH; Giffard C; James R; Moore GR; Kleanthous C J Mol Biol; 2004 Mar; 337(3):743-59. PubMed ID: 15019791 [TBL] [Abstract][Full Text] [Related]
9. Ligand-induced changes in the conformational dynamics of a bacterial cytotoxic endonuclease. van den Bremer ET; Keeble AH; Visser AJ; van Hoek A; Kleanthous C; Heck AJ; Jiskoot W Biochemistry; 2004 Apr; 43(14):4347-55. PubMed ID: 15065879 [TBL] [Abstract][Full Text] [Related]
10. Identification of residues in the putative TolA box which are essential for the toxicity of the endonuclease toxin colicin E9. -Schneider CG; Penfold CN; Moore GR; Kleanthous C; James R Microbiology (Reading); 1997 Sep; 143 ( Pt 9)():2931-2938. PubMed ID: 9308177 [TBL] [Abstract][Full Text] [Related]
11. The TolA-recognition site of colicin N. ITC, SPR and stopped-flow fluorescence define a crucial 27-residue segment. Gokce I; Raggett EM; Hong Q; Virden R; Cooper A; Lakey JH J Mol Biol; 2000 Dec; 304(4):621-32. PubMed ID: 11099384 [TBL] [Abstract][Full Text] [Related]
12. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association. Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682 [TBL] [Abstract][Full Text] [Related]
13. Probing the Escherichia coli transcriptional activator MarA using alanine-scanning mutagenesis: residues important for DNA binding and activation. Gillette WK; Martin RG; Rosner JL J Mol Biol; 2000 Jun; 299(5):1245-55. PubMed ID: 10873449 [TBL] [Abstract][Full Text] [Related]
14. Flexibility in the receptor-binding domain of the enzymatic colicin E9 is required for toxicity against Escherichia coli cells. Penfold CN; Healy B; Housden NG; Boetzel R; Vankemmelbeke M; Moore GR; Kleanthous C; James R J Bacteriol; 2004 Jul; 186(14):4520-7. PubMed ID: 15231784 [TBL] [Abstract][Full Text] [Related]
15. A 76-residue polypeptide of colicin E9 confers receptor specificity and inhibits the growth of vitamin B12-dependent Escherichia coli 113/3 cells. Penfold CN; Garinot-Schneider C; Hemmings AM; Moore GR; Kleanthous C; James R Mol Microbiol; 2000 Nov; 38(3):639-49. PubMed ID: 11069686 [TBL] [Abstract][Full Text] [Related]
16. Characterisation of a mobile protein-binding epitope in the translocation domain of colicin E9. Macdonald CJ; Tozawa K; Collins ES; Penfold CN; James R; Kleanthous C; Clayden NJ; Moore GR J Biomol NMR; 2004 Sep; 30(1):81-96. PubMed ID: 15452437 [TBL] [Abstract][Full Text] [Related]
17. Identification of a DNA-binding domain and an active-site residue of pseudorabies virus DNase. Ho TY; Wu SL; Hsiang CH; Chang TJ; Hsiang CY Biochem J; 2000 Mar; 346 Pt 2(Pt 2):441-5. PubMed ID: 10677364 [TBL] [Abstract][Full Text] [Related]
18. Mutagenic scan of the H-N-H motif of colicin E9: implications for the mechanistic enzymology of colicins, homing enzymes and apoptotic endonucleases. Walker DC; Georgiou T; Pommer AJ; Walker D; Moore GR; Kleanthous C; James R Nucleic Acids Res; 2002 Jul; 30(14):3225-34. PubMed ID: 12136104 [TBL] [Abstract][Full Text] [Related]
19. Molecular analysis of the protein-protein interaction between the E9 immunity protein and colicin E9. Wallis R; Moore GR; Kleanthous C; James R Eur J Biochem; 1992 Dec; 210(3):923-30. PubMed ID: 1483475 [TBL] [Abstract][Full Text] [Related]
20. Identification of the catalytic motif of the microbial ribosome inactivating cytotoxin colicin E3. Walker D; Lancaster L; James R; Kleanthous C Protein Sci; 2004 Jun; 13(6):1603-11. PubMed ID: 15133158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]