These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 8709282)

  • 1. Sequence analysis of the human DNA flanking sites of human immunodeficiency virus type 1 integration.
    Stevens SW; Griffith JD
    J Virol; 1996 Sep; 70(9):6459-62. PubMed ID: 8709282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An MuLV transmission vector system designed to permit recovery in E. coli of proviral and cellular flanking sequences.
    Jørgensen P; Mikkelsen T; Pedersen FS; Kjeldgaard NO
    Virus Genes; 1988 Mar; 1(2):221-33. PubMed ID: 2467437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human immunodeficiency virus type 1 may preferentially integrate into chromatin occupied by L1Hs repetitive elements.
    Stevens SW; Griffith JD
    Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5557-61. PubMed ID: 8202527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Host sequences flanking the HIV provirus.
    Vincent KA; York-Higgins D; Quiroga M; Brown PO
    Nucleic Acids Res; 1990 Oct; 18(20):6045-7. PubMed ID: 2235486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of human immunodeficiency virus type 1 nef gene sequences present in vivo.
    Shugars DC; Smith MS; Glueck DH; Nantermet PV; Seillier-Moiseiwitsch F; Swanstrom R
    J Virol; 1993 Aug; 67(8):4639-50. PubMed ID: 8043040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characterization of human immunodeficiency virus type 1 cloned directly from uncultured human brain tissue: identification of replication-competent and -defective viral genomes.
    Li Y; Kappes JC; Conway JA; Price RW; Shaw GM; Hahn BH
    J Virol; 1991 Aug; 65(8):3973-85. PubMed ID: 1830110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the junctions between human immunodeficiency virus type 1 proviral DNA and human DNA.
    Vink C; Groenink M; Elgersma Y; Fouchier RA; Tersmette M; Plasterk RH
    J Virol; 1990 Nov; 64(11):5626-7. PubMed ID: 2214029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presence of multiple genetic subtypes of human immunodeficiency virus type 1 proviruses in Uganda.
    Bruce C; Clegg C; Featherstone A; Smith J; Biryahawaho B; Downing R; Oram J
    AIDS Res Hum Retroviruses; 1994 Nov; 10(11):1543-50. PubMed ID: 7888209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome structure and human immunodeficiency virus type 1 cDNA integration: centromeric alphoid repeats are a disfavored target.
    Carteau S; Hoffmann C; Bushman F
    J Virol; 1998 May; 72(5):4005-14. PubMed ID: 9557688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mouse mammary tumor virus carrying a bacterial supF gene has wild-type pathogenicity and enables rapid isolation of proviral integration sites.
    Jiang Z; Shackleford GM
    J Virol; 1999 Dec; 73(12):9810-5. PubMed ID: 10559292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly preferred targets for retrovirus integration.
    Shih CC; Stoye JP; Coffin JM
    Cell; 1988 May; 53(4):531-7. PubMed ID: 2836061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tagging the genome of the murine leukemia retrovirus SL3-3 by a bacterial lac operator sequence.
    Jørgensen P; Mikkelsen T; Pedersen K; Pedersen FS; Kjeldgaard NO
    Gene; 1991 Dec; 109(2):243-7. PubMed ID: 1722473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simplified plasmid rescue of host sequences adjacent to integrated proviruses.
    Kurdi-Haidar B; Friedmann T
    Gene; 1996 Feb; 168(2):199-203. PubMed ID: 8654944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular analysis of the recombination junctions of lambda bio transducing phages.
    Kumagai M; Ikeda H
    Mol Gen Genet; 1991 Nov; 230(1-2):60-4. PubMed ID: 1660569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Variability of the HIV-1 nef regulatory gene and its association with different HIV stages].
    Ryzhov KA; Matsevich GR; Gol'tsov VA; Lariukova TA; Zverev VV
    Vopr Virusol; 2004; 49(6):16-9. PubMed ID: 15597955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A defective proviral DNA with a 2.6-kb deletion of human immunodeficiency virus type 1 (HIV-1) in a persistently HIV-1 infected cell clone.
    Imai H; Maotani-Imai K; Shin YS; Ikuta K; Suehiro S; Kurimura T; Kato S; Hirai K
    Virus Genes; 1991 Jan; 5(1):81-8. PubMed ID: 2017879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence analysis of HIV-1 insertion sites in peripheral blood lymphocytes.
    Lyn D; Bennett NA; Shiramizu BT; Herndier BG; Igietseme JU
    Cell Mol Biol (Noisy-le-grand); 2001 Sep; 47(6):981-6. PubMed ID: 11785664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. nef/long terminal repeat quasispecies from HIV type 1-infected Mexican patients with different progression patterns and their pathogenesis in hu-PBL-SCID mice.
    Gómez-Román VR; Vázquez JA; del Carmen Basualdo M; Estrada FJ; Ramos-Kuri M; Soler C
    AIDS Res Hum Retroviruses; 2000 Mar; 16(5):441-52. PubMed ID: 10772530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription.
    Lewinski MK; Bisgrove D; Shinn P; Chen H; Hoffmann C; Hannenhalli S; Verdin E; Berry CC; Ecker JR; Bushman FD
    J Virol; 2005 Jun; 79(11):6610-9. PubMed ID: 15890899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide sequence and genome organization of biologically active proviruses of the bovine immunodeficiency-like virus.
    Garvey KJ; Oberste MS; Elser JE; Braun MJ; Gonda MA
    Virology; 1990 Apr; 175(2):391-409. PubMed ID: 2183467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.