These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 8709968)
1. Sequence variation in the putative replication origins of the five genetically distinct basic Euoenothera plastid chromosomes (plastomes). Hornung S; Fulgosi H; Dörfel P; Herrmann RG Mol Gen Genet; 1996 Jul; 251(5):609-12. PubMed ID: 8709968 [TBL] [Abstract][Full Text] [Related]
2. Proliferation of direct repeats near the Oenothera chloroplast DNA origin of replication. Sears BB; Stoike LL; Chiu WL Mol Biol Evol; 1996 Jul; 13(6):850-63. PubMed ID: 8754220 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the 16S-23S internal transcribed spacer among 34 higher plants: suitability for interspecific plastid transformation. McNutt PM; Dehart MJ; Matej LA Plant Cell Rep; 2007 Jan; 26(1):47-60. PubMed ID: 16912867 [TBL] [Abstract][Full Text] [Related]
4. Complete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome I of the five distinguishable euoenothera plastomes. Hupfer H; Swiatek M; Hornung S; Herrmann RG; Maier RM; Chiu WL; Sears B Mol Gen Genet; 2000 May; 263(4):581-5. PubMed ID: 10852478 [TBL] [Abstract][Full Text] [Related]
5. Physical mapping of differences in chloroplast DNA of the five wild-type plastomes in Oenothera subsection Euoenothera. Gordon KH; Crouse EJ; Bohnert HJ; Herrmann RG Theor Appl Genet; 1982 Dec; 61(4):373-84. PubMed ID: 24270500 [TBL] [Abstract][Full Text] [Related]
6. The complete nucleotide sequences of the five genetically distinct plastid genomes of Oenothera, subsection Oenothera: I. sequence evaluation and plastome evolution. Greiner S; Wang X; Rauwolf U; Silber MV; Mayer K; Meurer J; Haberer G; Herrmann RG Nucleic Acids Res; 2008 Apr; 36(7):2366-78. PubMed ID: 18299283 [TBL] [Abstract][Full Text] [Related]
7. Evolution of dinoflagellate unigenic minicircles and the partially concerted divergence of their putative replicon origins. Zhang Z; Cavalier-Smith T; Green BR Mol Biol Evol; 2002 Apr; 19(4):489-500. PubMed ID: 11919290 [TBL] [Abstract][Full Text] [Related]
9. Extensive intraindividual variation in plastid rDNA sequences from the holoparasite Cynomorium coccineum (Cynomoriaceae). García MA; Nicholson EH; Nickrent DL J Mol Evol; 2004 Mar; 58(3):322-32. PubMed ID: 15045487 [TBL] [Abstract][Full Text] [Related]
10. Birth of Four Chimeric Plastid Gene Clusters in Japanese Umbrella Pine. Hsu CY; Wu CS; Chaw SM Genome Biol Evol; 2016 Jun; 8(6):1776-84. PubMed ID: 27269365 [TBL] [Abstract][Full Text] [Related]
11. Complex patterns of plastid 16S rRNA gene evolution in nonphotosynthetic green algae. Nedelcu AM J Mol Evol; 2001 Dec; 53(6):670-9. PubMed ID: 11677627 [TBL] [Abstract][Full Text] [Related]
12. Evidence for conserved tRNA genes in the 16S-23S rDNA spacer sequence and two rrn operons of Xylella fastidiosa. Chen J; Banks D; Jarret RL; Jones JB Can J Microbiol; 2000 Dec; 46(12):1171-5. PubMed ID: 11142410 [TBL] [Abstract][Full Text] [Related]
13. Variation in 16S-23S rRNA intergenic spacer regions in Photobacterium damselae: a mosaic-like structure. Osorio CR; Collins MD; Romalde JL; Toranzo AE Appl Environ Microbiol; 2005 Feb; 71(2):636-45. PubMed ID: 15691912 [TBL] [Abstract][Full Text] [Related]
14. Plastome variation and phylogeny of Taxillus (Loranthaceae). Su HJ; Liang SL; Nickrent DL PLoS One; 2021; 16(8):e0256345. PubMed ID: 34407123 [TBL] [Abstract][Full Text] [Related]
15. First complete nucleotide sequence and heterologous gene organization of the two rRNA operons in the phytoplasma genome. Jung HY; Miyata S; Oshima K; Kakizawa S; Nishigawa H; Wei W; Suzuki S; Ugaki M; Hibi T; Namba S DNA Cell Biol; 2003 Mar; 22(3):209-15. PubMed ID: 12804119 [TBL] [Abstract][Full Text] [Related]
16. Organization of ribosomal RNA genes from a Loofah witches' broom phytoplasma. Ho KC; Tsai CC; Chung TL DNA Cell Biol; 2001 Feb; 20(2):115-22. PubMed ID: 11244569 [TBL] [Abstract][Full Text] [Related]
17. RFLP of rRNA genes and sequencing of the 16S-23S rDNA intergenic spacer region of ammonia-oxidizing bacteria: a phylogenetic approach. Aakra A; Utåker JB; Nes IF Int J Syst Bacteriol; 1999 Jan; 49 Pt 1():123-30. PubMed ID: 10028253 [TBL] [Abstract][Full Text] [Related]
18. The nucleotide sequence of the promoter, 16S rRNA and spacer region of the ribosomal RNA operon of Mycobacterium tuberculosis and comparison with Mycobacterium leprae precursor rRNA. Kempsell KE; Ji YE; Estrada IC; Colston MJ; Cox RA J Gen Microbiol; 1992 Aug; 138 Pt 8():1717-27. PubMed ID: 1382114 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the small 16S to 23S intergenic spacer region (ISR) of the rRNA operons of some Escherichia coli strains of the ECOR collection and E. coli K-12. García-Martínez J; Martínez-Murcia A; Antón AI; Rodríguez-Valera F J Bacteriol; 1996 Nov; 178(21):6374-7. PubMed ID: 8892845 [TBL] [Abstract][Full Text] [Related]
20. Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Boyer SL; Flechtner VR; Johansen JR Mol Biol Evol; 2001 Jun; 18(6):1057-69. PubMed ID: 11371594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]