These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8710750)

  • 1. The effect of formulation on the antimicrobial activity of cetylpyridinium chloride in candy based lozenges.
    Richards RM; Xing JZ; Weir LF
    Pharm Res; 1996 Apr; 13(4):583-7. PubMed ID: 8710750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excipient interaction with cetylpyridinium chloride activity in tablet based lozenges.
    Richards RM; Xing JZ; Mackay KM
    Pharm Res; 1996 Aug; 13(8):1258-64. PubMed ID: 8865323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bactericidal activity of hexylresorcinol lozenges against oropharyngeal organisms associated with acute sore throat.
    Matthews D; Adegoke O; Shephard A
    BMC Res Notes; 2020 Feb; 13(1):99. PubMed ID: 32093784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Diluents, Saliva and Other Organics on the Microbicidal Activity of Cetylpyridinium Chloride and Povidone-iodine.
    Urakawa R; Inubushi J; Tobata H; Eguchi T
    Biocontrol Sci; 2020; 25(2):45-53. PubMed ID: 32507790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficacy of 8 mg lidocaine and 2 mg cetylpyridinium chloride (CPC) fixed-combination lozenges on sore throat pain intensity compared with 1 mg lidocaine and 2 mg CPC fixed-combination lozenges in subjects with sore throat due to upper respiratory tract infection: a randomized double-blind parallel-group single-dose study.
    Donath F; Mallefet P; Garreffa S; Furcha R
    Trials; 2018 Dec; 19(1):679. PubMed ID: 30541606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the quaternary ammonium compounds dequalinium and cetylpyridinium chlorides in candy-based lozenges by high-performance liquid chromatography.
    Taylor RB; Toasaksiri S; Reid RG; Wood D
    Analyst; 1997 Sep; 122(9):973-6. PubMed ID: 9374026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial activity of topical skin pharmaceuticals - an in vitro study.
    Alsterholm M; Karami N; Faergemann J
    Acta Derm Venereol; 2010 May; 90(3):239-45. PubMed ID: 20526539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of salivary S. aureus and mutans group streptococci by a preprocedural chlorhexidine rinse and maximal inhibitory dilutions of chlorhexidine and cetylpyridinium.
    de Albuquerque RF; Head TW; Mian H; Rodrigo A; Müller K; Sanches K; Ito IY
    Quintessence Int; 2004 Sep; 35(8):635-40. PubMed ID: 15366527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of copper and zinc ions on the germicidal properties of two popular pharmaceutical antiseptic agents cetylpyridinium chloride and povidone-iodine.
    Zeelie JJ; McCarthy TJ
    Analyst; 1998 Mar; 123(3):503-7. PubMed ID: 9659710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro evaluation of the antimicrobial activities of selected lozenges.
    Richards RM; Xing DK
    J Pharm Sci; 1993 Dec; 82(12):1218-20. PubMed ID: 8308699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Comparison of in vitro action of cetylpyridinium chloride containing preparations].
    Deckers C; Ohgke H
    Arzneimittelforschung; 1995 Dec; 45(12):1335-7. PubMed ID: 8595096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro antifungal properties of mouthrinses containing antimicrobial agents.
    Giuliana G; Pizzo G; Milici ME; Musotto GC; Giangreco R
    J Periodontol; 1997 Aug; 68(8):729-33. PubMed ID: 9287062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the maximum inhibitory dilution of cetylpyridinium chloride-based mouthwashes against Staphylococcus aureus: an in vitro study.
    Watanabe E; Tanomaru JM; Nascimento AP; Matoba-Júnior F; Tanomaru-Filho M; Yoko Ito I
    J Appl Oral Sci; 2008; 16(4):275-9. PubMed ID: 19089260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioequivalence of locally acting lozenges: Evaluation of critical in vivo parameters and first steps towards a bio-predictive in vitro test method.
    Tietz K; Gutknecht SI; Klein S
    Eur J Pharm Biopharm; 2018 Feb; 123():71-83. PubMed ID: 29170034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of teat dips with excised teats.
    Watts JL; Boddie RL; Pankey JW; Nickerson SC
    J Dairy Sci; 1984 Sep; 67(9):2062-5. PubMed ID: 6386907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of cetylpyridinium chloride used as oropharyngeal antiseptic.
    Pitten FA; Kramer A
    Arzneimittelforschung; 2001; 51(7):588-95. PubMed ID: 11505791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cetylpyridinium chloride resistance and treatment on fluconazole activity versus Candida albicans.
    Edlind MP; Smith WL; Edlind TD
    Antimicrob Agents Chemother; 2005 Feb; 49(2):843-5. PubMed ID: 15673785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro activities of antimicrobial agents against Candida species.
    Giuliana G; Pizzo G; Milici ME; Giangreco R
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 1999 Jan; 87(1):44-9. PubMed ID: 9927079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo studies on the microbicidal activity of antiseptics on the flora of the oropharyngeal cavity.
    Exner M; Gregori G; Pau HW; Vogel F
    J Hosp Infect; 1985 Mar; 6 Suppl A():185-8. PubMed ID: 2860166
    [No Abstract]   [Full Text] [Related]  

  • 20. Reduced susceptibility of methicillin-resistant Staphylococcus aureus to cetylpyridinium chloride and chlorhexidine.
    Irizarry L; Merlin T; Rupp J; Griffith J
    Chemotherapy; 1996; 42(4):248-52. PubMed ID: 8804791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.