BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8710823)

  • 1. Progress of 1D protein structure prediction at last.
    Rost B; Sander C
    Proteins; 1995 Nov; 23(3):295-300. PubMed ID: 8710823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress in fold recognition.
    Flöckner H; Braxenthaler M; Lackner P; Jaritz M; Ortner M; Sippl MJ
    Proteins; 1995 Nov; 23(3):376-86. PubMed ID: 8710830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining evolutionary information and neural networks to predict protein secondary structure.
    Rost B; Sander C
    Proteins; 1994 May; 19(1):55-72. PubMed ID: 8066087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein secondary structure prediction using local alignments.
    Salamov AA; Solovyev VV
    J Mol Biol; 1997 Apr; 268(1):31-6. PubMed ID: 9149139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neural network method for prediction of beta-turn types in proteins using evolutionary information.
    Kaur H; Raghava GP
    Bioinformatics; 2004 Nov; 20(16):2751-8. PubMed ID: 15145798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of alpha-turns in proteins using PSI-BLAST profiles and secondary structure information.
    Kaur H; Raghava GP
    Proteins; 2004 Apr; 55(1):83-90. PubMed ID: 14997542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein backbone angle prediction with machine learning approaches.
    Kuang R; Leslie CS; Yang AS
    Bioinformatics; 2004 Jul; 20(10):1612-21. PubMed ID: 14988121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane helices predicted at 95% accuracy.
    Rost B; Casadio R; Fariselli P; Sander C
    Protein Sci; 1995 Mar; 4(3):521-33. PubMed ID: 7795533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of evolutionary information in prediction of aromatic-backbone NH interactions in proteins.
    Kaur H; Raghava GP
    FEBS Lett; 2004 Apr; 564(1-2):47-57. PubMed ID: 15094041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure.
    Garg A; Kaur H; Raghava GP
    Proteins; 2005 Nov; 61(2):318-24. PubMed ID: 16106377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conservation and prediction of solvent accessibility in protein families.
    Rost B; Sander C
    Proteins; 1994 Nov; 20(3):216-26. PubMed ID: 7892171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of protein secondary structure at better than 70% accuracy.
    Rost B; Sander C
    J Mol Biol; 1993 Jul; 232(2):584-99. PubMed ID: 8345525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining prediction of secondary structure and solvent accessibility in proteins.
    Adamczak R; Porollo A; Meller J
    Proteins; 2005 May; 59(3):467-75. PubMed ID: 15768403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment.
    Kaur H; Raghava GP
    Protein Sci; 2003 May; 12(5):923-9. PubMed ID: 12717015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Threading a database of protein cores.
    Madej T; Gibrat JF; Bryant SH
    Proteins; 1995 Nov; 23(3):356-69. PubMed ID: 8710828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural networks for secondary structure and structural class predictions.
    Chandonia JM; Karplus M
    Protein Sci; 1995 Feb; 4(2):275-85. PubMed ID: 7757016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein fold recognition by prediction-based threading.
    Rost B; Schneider R; Sander C
    J Mol Biol; 1997 Jul; 270(3):471-80. PubMed ID: 9237912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information.
    Mooney C; Pollastri G
    Proteins; 2009 Oct; 77(1):181-90. PubMed ID: 19422056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence.
    Rice DW; Eisenberg D
    J Mol Biol; 1997 Apr; 267(4):1026-38. PubMed ID: 9135128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of gapped positions in multiple sequence alignments on secondary structure prediction methods.
    Simossis VA; Heringa J
    Comput Biol Chem; 2004 Dec; 28(5-6):351-66. PubMed ID: 15556476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.