These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 871086)

  • 1. Hydro- and hemodynamic effects of catheterization of vessels. V. Experimental and clinical catheterization of stenoses.
    Bjorno L; Pettersson H
    Acta Radiol Diagn (Stockh); 1977 Mar; 18(2):193-209. PubMed ID: 871086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydro- and hemodynamic effects of catheterization of vessels. II. Model experiments comparing circular and annular lumen area reduction.
    Bjorno L; Pettersson H
    Acta Radiol Diagn (Stockh); 1976 Nov; 17(6):749-62. PubMed ID: 1016498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydro- and hemodynamic effects of catheterization of vessels. III. Experiments with a rigid-walled model.
    Bjorno L; Pettersson H
    Acta Radiol Diagn (Stockh); 1977 Jan; 18(1):1-16. PubMed ID: 878885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydro- and hemodynamic effects of catheterization of vessels. IV. Catheterization in the dog.
    Hellsten S; Pettersson H
    Acta Radiol Diagn (Stockh); 1977 Jan; 18(1):17-24. PubMed ID: 878888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Percutaneous production of renal artery lesions. Experiments in the pig.
    Ekelund L; Stridbeck H
    Acta Radiol Diagn (Stockh); 1979; 20(6):907-16. PubMed ID: 546072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phasic pressure gradients across coronary and renal artery stenoses in humans.
    Ganz P; Harrington DP; Gaspar J; Barry WH
    Am Heart J; 1983 Dec; 106(6):1399-406. PubMed ID: 6650363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydro-and hemodynamic effects of catheterization of vessels. I. An experimental model.
    Bjøornøo L; Pettersson H
    Acta Radiol Diagn (Stockh); 1976 Jul; 17(4):511-8. PubMed ID: 970211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of stenosis geometry on the Doppler-catheter gradient relation in vitro: a manifestation of pressure recovery.
    Baumgartner H; Schima H; Tulzer G; Kühn P
    J Am Coll Cardiol; 1993 Mar; 21(4):1018-25. PubMed ID: 8450150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Treatment of para-ostium renal artery stenoses with a new, solidly premounted balloon expandable stent].
    Djavidani B; Manke C; Lenhart M; Zorger N; Finkenzeller T; Feuerbach S; Link J
    Rofo; 2001 Jul; 173(7):619-25. PubMed ID: 11512234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal artery pressure gradients in patients with angiographic evidence of atherosclerotic renal artery stenosis.
    Nahman NS; Maniam P; Hernandez RA; Falkenhain M; Hebert LA; Kantor BS; Stockum AE; VanAman ME; Spigos DG
    Am J Kidney Dis; 1994 Oct; 24(4):695-9. PubMed ID: 7942830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transluminal angioplasty of renal artery stenosis: 70 experiences.
    Schwarten DE
    AJR Am J Roentgenol; 1980 Nov; 135(5):969-74. PubMed ID: 6778176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal artery stenosis: grading of hemodynamic changes with cine phase-contrast MR blood flow measurements.
    Schoenberg SO; Knopp MV; Bock M; Kallinowski F; Just A; Essig M; Hawighorst H; Schad L; van Kaick G
    Radiology; 1997 Apr; 203(1):45-53. PubMed ID: 9122415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Balloon catheter dilatation of renal artery stenosis in the dog. A preliminary report.
    Ekelund L; Gerlock J; Goncharenko V; Novak G
    Eur Urol; 1978; 4(4):298-302. PubMed ID: 668745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamic significance of renal artery stenosis: digital subtraction angiography versus systolically gated three-dimensional phase-contrast MR angiography.
    Wasser MN; Westenberg J; van der Hulst VP; van Baalen J; van Bockel JH; van Erkel AR; Pattynama PM
    Radiology; 1997 Feb; 202(2):333-8. PubMed ID: 9015052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Percutaneous transluminar catheter angioplasty for nephroarterial stenoses (author's transl)].
    Müller JH; Müller P; Correns HJ; Kosanke M
    Radiol Diagn (Berl); 1981; 22(2):155-62. PubMed ID: 7255686
    [No Abstract]   [Full Text] [Related]  

  • 16. [Measurement of the pressure gradient in renal artery stenosis].
    Beránek I; Belán A; Pospíchal J
    Fortschr Geb Rontgenstr Nuklearmed; 1969 Jan; 110(1):48-56. PubMed ID: 5390077
    [No Abstract]   [Full Text] [Related]  

  • 17. [Blood flow in a renal artery with a deformed vessel wall].
    Kozhevnikov AA; Arabidze GG; Matveeva LS
    Biofizika; 1977; 22(2):318-22. PubMed ID: 861271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new method for induction of fibrous renal artery stenosis in the pig designed for the study of percutaneous balloon catheter dilatation.
    Lindstedt E; Lundquist B; Ekelund L; Stridbeck H; Jonsson N
    J Urol; 1982 Oct; 128(4):840-4. PubMed ID: 6216346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal fractional flow reserve: a hemodynamic evaluation of moderate renal artery stenoses.
    Subramanian R; White CJ; Rosenfield K; Bashir R; Almagor Y; Meerkin D; Shalman E
    Catheter Cardiovasc Interv; 2005 Apr; 64(4):480-6. PubMed ID: 15789382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspiration thromboembolectomy of an acute renal artery occlusion with the Hieshima coaxial catheter.
    Saxon RR; LaBerge JM; Ring EJ
    J Vasc Interv Radiol; 1991 Aug; 2(3):353-6; discussion 356-8. PubMed ID: 1799781
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.