BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8710952)

  • 1. A new physiologically approached in vitro test for quick evaluation of the hemolytic activity of surfactants.
    Stenz R; Bauer KH
    Pharmazie; 1996 May; 51(5):283-7. PubMed ID: 8710952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro studies of the hemolytic activity of microemulsions in human erythrocytes.
    Aparicio RM; José García-Celma M; Pilar Vinardell M; Mitjans M
    J Pharm Biomed Anal; 2005 Oct; 39(5):1063-7. PubMed ID: 16054795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of chemical modification of the surface of erythrocytes on their stability to the hemolytic action of sodium alkyl sulfates].
    Osipov NN; Zaslavskiĭ BIu; Rogozhin SV
    Biokhimiia; 1978 Sep; 43(9):1704-9. PubMed ID: 719073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of new sugar-based surfactants and evaluation of their hemolytic activities.
    Neimert-Andersson K; Sauer S; Panknin O; Borg T; Söderlind E; Somfai P
    J Org Chem; 2006 Apr; 71(9):3623-6. PubMed ID: 16626152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Method for analysis of nanoparticle hemolytic properties in vitro.
    Neun BW; Dobrovolskaia MA
    Methods Mol Biol; 2011; 697():215-24. PubMed ID: 21116971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mechanism of protective effect of amphiphilic compounds during hypertonic hemolysis of erythrocytes].
    Orlova NV; Shpakova NM
    Fiziol Zh (1994); 2006; 52(5):55-61. PubMed ID: 17176840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants.
    Nogueira DR; Mitjans M; Infante MR; Vinardell MP
    Acta Biomater; 2011 Jul; 7(7):2846-56. PubMed ID: 21421083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Standardization of an in vitro red blood cell test for evaluating the acute cytotoxic potential of tensides.
    Pape WJ; Hoppe U
    Arzneimittelforschung; 1990 Apr; 40(4):498-502. PubMed ID: 2357252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Action of surface-active substances of biological membranes. III. Comparison of hemolytic activity of ionic and nonionic surfactants.
    Zaslavsky BY; Ossipov NN; Rogozhin SV
    Biochim Biophys Acta; 1978 Jun; 510(1):151-9. PubMed ID: 667031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactic Dehydrogenase in the In Vitro Evaluation of Hemolytic Properties of Ventricular Assist Device.
    Li D; Wu Q; Liu S; Chen Y; Chen H; Ruan Y; Zhang Y
    Artif Organs; 2017 Nov; 41(11):E274-E284. PubMed ID: 28722142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Hydrophobic modification of polyelectrolytes as solubility enhancers in preparations for parenteral administration].
    Eisenmann G; Bauer KH
    Pharmazie; 1995 Mar; 50(3):191-4. PubMed ID: 7732050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel polymerizable surfactants with pH-sensitive amphiphilicity and cell membrane disruption for efficient siRNA delivery.
    Wang XL; Ramusovic S; Nguyen T; Lu ZR
    Bioconjug Chem; 2007; 18(6):2169-77. PubMed ID: 17939730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemolytic action of anionic surfactants of the diacyl lysine type.
    Vives MA; Macián M; Seguer J; Infante MR; Vinardell MP
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1997 Sep; 118(1):71-4. PubMed ID: 9366037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of eye and skin irritation of arginine-derivative surfactants using different in vitro endpoints as alternatives to the in vivo assays.
    Martinez V; Corsini E; Mitjans M; Pinazo A; Vinardell MP
    Toxicol Lett; 2006 Jul; 164(3):259-67. PubMed ID: 16472949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemolysis and antihemolysis induced by amino acid-based surfactants.
    Sánchez L; Martínez V; Infante MR; Mitjans M; Vinardell MP
    Toxicol Lett; 2007 Mar; 169(2):177-84. PubMed ID: 17293064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Kinetic spectrophotometric study on hemolytic process of polysorbate 80].
    Zhang SF; Yan D; Tang HY; Luo Y; Zhang P; Yang M; Wang YS; Xiao XH
    Yao Xue Xue Bao; 2010 Apr; 45(4):535-8. PubMed ID: 21355224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sticholysins I and II interaction with cationic micelles promotes toxins' conformational changes and enhanced hemolytic activity.
    Lanio ME; Alvarez C; Ochoa C; Ros U; Pazos F; Martínez D; Tejuca M; Eugenio LM; Casallanovo F; Dyszy FH; Schreier S; Lissi E
    Toxicon; 2007 Nov; 50(6):731-9. PubMed ID: 17681582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The hemolysis and solubilization behavior of nonionic polymer surface-active agents classes].
    Reinhart T; Bauer KH
    Pharmazie; 1995 Jun; 50(6):403-7. PubMed ID: 7544467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemolysis parameters of St. Jude Medical: Hemodynamic Plus and Regent valves in aortic position.
    Suedkamp M; Lercher AJ; Mueller-Riemenschneider F; LaRosee K; Tossios P; Mehlhorn U
    Int J Cardiol; 2004 May; 95(1):89-93. PubMed ID: 15159044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in red blood cell integrity related to infusion pumps: a comparison of three different pump mechanisms.
    Frey B; Eber S; Weiss M
    Pediatr Crit Care Med; 2003 Oct; 4(4):465-70. PubMed ID: 14525644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.