BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 871227)

  • 1. alpha-Isopropylmalate synthase from Alcaligenes eutrophus H 16. II. Substrate specificity and kinetics.
    Wiegel J; Schlegel HG
    Arch Microbiol; 1977 Apr; 112(3):247-54. PubMed ID: 871227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha-isopropylmalate synthase from Alcaligenes eutrophus H 16. III. Endproduct inhibition and its relief by valine and isoleucine.
    Wiegel J; Schlegel HG
    Arch Microbiol; 1977 Sep; 114(3):203-10. PubMed ID: 20865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of alpha-ketoisovalerate to alpha-isopropylmalate synthase. Half-of-the-sites and all-of-the-sites availability.
    Teng-Leary E; Kohlhaw GB
    Biochim Biophys Acta; 1975 Nov; 410(1):210-9. PubMed ID: 1103972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible, coenzyme-A-mediated inactivation of biosynthetic condensing enzymes in yeast: a possible regulatory mechanism.
    Tracy JW; Kohlhaw GB
    Proc Natl Acad Sci U S A; 1975 May; 72(5):1802-6. PubMed ID: 1099580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alpha-Isopropylmalate synthase from Alcaligenes eutrophus H 16 I. Purification and general properties.
    Wiegel J; Schlegel HG
    Arch Microbiol; 1977 Apr; 112(3):239-46. PubMed ID: 16576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mn++-specific reactivation of EDTA inactivated alpha-isopropylmalate synthase from Alcaligenes eutrophus H 16.
    Wiegel J
    Biochem Biophys Res Commun; 1978 Jun; 82(3):907-12. PubMed ID: 29612
    [No Abstract]   [Full Text] [Related]  

  • 7. Kinetic and chemical mechanism of alpha-isopropylmalate synthase from Mycobacterium tuberculosis.
    de Carvalho LP; Blanchard JS
    Biochemistry; 2006 Jul; 45(29):8988-99. PubMed ID: 16846242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for two distinct CoA binding sites on yeast alpha-isopropylmalate synthase.
    Tracy JW; Kohlhaw GB
    J Biol Chem; 1977 Jun; 252(12):4085-91. PubMed ID: 325001
    [No Abstract]   [Full Text] [Related]  

  • 9. Modifying the determinants of α-ketoacid substrate selectivity in mycobacterium tuberculosis α-isopropylmalate synthase.
    Hunter MF; Parker EJ
    FEBS Lett; 2014 May; 588(9):1603-7. PubMed ID: 24613923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subdomain II of α-isopropylmalate synthase is essential for activity: inferring a mechanism of feedback inhibition.
    Zhang Z; Wu J; Lin W; Wang J; Yan H; Zhao W; Ma J; Ding J; Zhang P; Zhao GP
    J Biol Chem; 2014 Oct; 289(40):27966-78. PubMed ID: 25128527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and properties of beta-ketothiolase from Clostridium pasteurianum.
    Berndt H; Schlegel HG
    Arch Microbiol; 1975 Mar; 103(1):21-30. PubMed ID: 240336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of yeast alpha-isopropylmalate synthase by CoA. Antagonism between CoA and adenylates and the mechanism of CoA inactivation.
    Hampsey DM; Kohlhaw GB
    J Biol Chem; 1981 Apr; 256(8):3791-6. PubMed ID: 7012143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of the C-terminal regulatory domain of α-isopropylmalate synthase disrupts functional substrate binding.
    Huisman FH; Koon N; Bulloch EM; Baker HM; Baker EN; Squire CJ; Parker EJ
    Biochemistry; 2012 Mar; 51(11):2289-97. PubMed ID: 22352945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of their coenzyme A esters on enzymes of fatty acid oxidation.
    Holland PC; Senior AE; Sherratt HS
    Biochem J; 1973 Sep; 136(1):173-84. PubMed ID: 4797895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alpha-isopropylmalate synthase from yeast: purification, kinetic studies, and effect of ligands on stability.
    Ulm EH; Böhme R; Kohlhaw G
    J Bacteriol; 1972 Jun; 110(3):1118-26. PubMed ID: 5079061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between alpha-ketoisovalerate metabolism and the pathways of gluconeogenesis and urea synthesis in isolated hepatocytes.
    Martin-Requero A; Corkey BE; Cerdan S; Walajtys-Rode E; Parrilla RL; Williamson JR
    J Biol Chem; 1983 Mar; 258(6):3673-81. PubMed ID: 6833225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate-inhibiton by acetyl-CoA in the condensation reaction between oxaloacetate and acetyl-CoA catalyzed by citrate synthase from pig heart.
    Johansson CJ; Pettersson G
    Biochim Biophys Acta; 1977 Sep; 484(1):208-15. PubMed ID: 560867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of norvaline, norleucine, and homoisoleucine in Serratia marcescens.
    Kisumi M; Sugiura M; Chibata I
    J Biochem; 1976 Aug; 80(2):333-9. PubMed ID: 794063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An enzyme-bound intermediate in the biosynthesis of 3-hydroxy-3-methylglutaryl-coenzyme A.
    Middleton B; Tubbs PK
    Biochem J; 1974 Jan; 137(1):15-23. PubMed ID: 4595282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino-acid substitutions at the domain interface affect substrate and allosteric inhibitor binding in α-isopropylmalate synthase from Mycobacterium tuberculosis.
    Huisman FH; Squire CJ; Parker EJ
    Biochem Biophys Res Commun; 2013 Apr; 433(2):249-54. PubMed ID: 23500460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.