These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8712360)

  • 1. Correlation of kinetic energy losses in high-energy collision-induced dissociation with observed peptide product ions.
    Vachet RW; Winders AD; Glish GL
    Anal Chem; 1996 Feb; 68(3):522-6. PubMed ID: 8712360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-induced dissociation of protonated peptides: implications of initial kinetic energy spread.
    Cole RB; LeMeillour S; Tabet JC
    Anal Chem; 1992 Feb; 64(4):365-71. PubMed ID: 1319691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural studies of gangliosides by fast atom bombardment ionization, low-energy collision-activated dissociation, and tandem mass spectrometry.
    Kasama T; Handa S
    Biochemistry; 1991 Jun; 30(22):5621-4. PubMed ID: 2036433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collisional activation of peptide ions in FT-ICR mass spectrometry.
    Laskin J; Futrell JH
    Mass Spectrom Rev; 2003; 22(3):158-81. PubMed ID: 12838543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of internal backbone carbonyls: additional evidence for sequence-scrambling in collision-induced dissociation of y-type ions.
    Harper B; Miladi M; Solouki T
    J Am Soc Mass Spectrom; 2014 Oct; 25(10):1716-29. PubMed ID: 25070583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tandem mass spectrometric characterization of bile acids and steroid conjugates based on low-energy collision-induced dissociation.
    Maekawa M; Shimada M; Iida T; Goto J; Mano N
    Steroids; 2014 Feb; 80():80-91. PubMed ID: 24296272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-reducing terminal linkage position determination in intact and permethylated synthetic oligosaccharides having a penultimate amino sugar: fast atom bombardment ionization, collisional-induced dissociation and tandem mass spectrometry.
    Laine RA; Yoon E; Mahier TJ; Abbas S; de Lappe B; Jain R; Matta K
    Biol Mass Spectrom; 1991 Sep; 20(9):505-14. PubMed ID: 1782202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the position of internal histidine residues on the collision-induced fragmentation of triply protonated tryptic peptides.
    Willard BB; Kinter M
    J Am Soc Mass Spectrom; 2001 Dec; 12(12):1262-71. PubMed ID: 11766753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is collision-induced dissociation of low-energy carbonyl sulfide cations adversely affected by asymmetry?
    Shukla AK
    Eur J Mass Spectrom (Chichester); 2004; 10(2):221-4. PubMed ID: 15103099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast atom bombardment-collision activated dissociation-linked field scanning mass spectrometry of the neuropeptide substance P.
    Desiderio DM; Katakuse I
    Anal Biochem; 1983 Mar; 129(2):425-9. PubMed ID: 6189424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Five-membered ring formation in unimolecular reactions of peptides: a key structural element controlling low-energy collision-induced dissociation of peptides.
    Schlosser A; Lehmann WD
    J Mass Spectrom; 2000 Dec; 35(12):1382-90. PubMed ID: 11180628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion trap collisional activation of c and z* ions formed via gas-phase ion/ion electron-transfer dissociation.
    Han H; Xia Y; McLuckey SA
    J Proteome Res; 2007 Aug; 6(8):3062-9. PubMed ID: 17608403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dehydration versus deamination of N-terminal glutamine in collision-induced dissociation of protonated peptides.
    Neta P; Pu QL; Kilpatrick L; Yang X; Stein SE
    J Am Soc Mass Spectrom; 2007 Jan; 18(1):27-36. PubMed ID: 17005415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragmentation characteristics of neuropeptides related to chromogranin B and proenkephalin B using fast atom bombardment and collision-induced dissociation.
    Boel S; Dillen L; van den Heuvel H; Claeys M
    Biol Mass Spectrom; 1994 Oct; 23(10):603-11. PubMed ID: 7986830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the dissociation kinetics of a transient intermediate.
    Asam MR; Glish GL
    J Am Soc Mass Spectrom; 1999 Feb; 10(2):119-25. PubMed ID: 9926406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion dissociation reactions induced in a high-pressure quadrupole collision cell.
    Whalen K; Grossert JS; Boyd RK
    Rapid Commun Mass Spectrom; 1995; 9(14):1366-75. PubMed ID: 8534887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Chemical Dynamics Simulations in Mass Spectrometry Studies of Collision-Induced Dissociation and Collisions of Biological Ions with Organic Surfaces.
    Martin Somer A; Macaluso V; Barnes GL; Yang L; Pratihar S; Song K; Hase WL; Spezia R
    J Am Soc Mass Spectrom; 2020 Jan; 31(1):2-24. PubMed ID: 32881516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of large ions in FT-ICR mass spectrometry.
    Laskin J; Futrell JH
    Mass Spectrom Rev; 2005; 24(2):135-67. PubMed ID: 15389858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociation of peptide ions by fast atom bombardment in a quadrupole ion trap.
    Misharin AS; Silivra OA; Kjeldsen F; Zubarev RA
    Rapid Commun Mass Spectrom; 2005; 19(15):2163-71. PubMed ID: 15988733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge-remote fragmentations are energy-dependent processes.
    Cheng C; Pittenauer E; Gross ML
    J Am Soc Mass Spectrom; 1998 Aug; 9(8):840-4. PubMed ID: 9692256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.