These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8712490)

  • 61. Behaviours of three-dimensional compressive and tensile forces exerted on a tooth during function.
    Kawata T; Yoda N; Kawaguchi T; Kuriyagawa T; Sasaki K
    J Oral Rehabil; 2007 Apr; 34(4):259-66. PubMed ID: 17371563
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Orthopedic headgear forces.
    Remmelink HJ
    Angle Orthod; 1993; 63(4):245. PubMed ID: 8297048
    [No Abstract]   [Full Text] [Related]  

  • 63. [Biomechanical effects of reversed headgear maxillary protraction on the craniofacial complex as determined by strain gauge measurements].
    Nakagawa M; Ichikawa K; Kamogashira K; Yukinari T; Itoh T; Matsumoto M
    Nihon Kyosei Shika Gakkai Zasshi; 1986 Mar; 45(1):109-18. PubMed ID: 3458841
    [No Abstract]   [Full Text] [Related]  

  • 64. Strain gauge analysis of the frontozygomatic region of the zygomatic complex.
    Oyen OJ; Melugin MB; Indresano AT
    J Oral Maxillofac Surg; 1996 Sep; 54(9):1092-5; discussion 1095-6. PubMed ID: 8811820
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Comparison of biomechanical behaviour of maxilla following Le Fort I osteotomy with 2- versus 4-plate fixation using 3D-FEA. Part 1: advancement surgery.
    Ataç MS; Erkmen E; Yücel E; Kurt A
    Int J Oral Maxillofac Surg; 2008 Dec; 37(12):1117-24. PubMed ID: 19027268
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Establishment of the craniofacial three-dimensional finite element models with the sutures defined alone].
    Hu XY; Dong FS; Lu HY; Ma WS; Yuan S
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2013 Oct; 48(10):600-5. PubMed ID: 24438567
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A study of strain and stress levels in the circummaxillary sutural systems during rapid maxillary expansion: an approach using both the strain gauge technique and the theoretical stress analysis.
    Tanne K; Sachdeva R; Miyasaka J; Yamagata Y; Sakuda M
    J Osaka Univ Dent Sch; 1986 Dec; 26():151-65. PubMed ID: 3550018
    [No Abstract]   [Full Text] [Related]  

  • 68. Stress and displacement patterns in the craniofacial skeleton with rapid maxillary expansion-a finite element method study.
    Priyadarshini J; Mahesh CM; Chandrashekar BS; Sundara A; Arun AV; Reddy VP
    Prog Orthod; 2017 Dec; 18(1):17. PubMed ID: 28603805
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Sutural bone deposition rate and strain magnitude during cranial development.
    Henderson JH; Longaker MT; Carter DR
    Bone; 2004 Feb; 34(2):271-80. PubMed ID: 14962805
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Rationalization of shape and related stress distribution in posterior teeth: a finite element study using nonlinear contact analysis.
    Magne P; Belser UC
    Int J Periodontics Restorative Dent; 2002 Oct; 22(5):425-33. PubMed ID: 12449302
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Experimental and postexperimental effects of posteriorly directed extraoral traction in adult Macaca fascicularis.
    Brandt HC; Shapiro PA; Kokich VG
    Am J Orthod; 1979 Mar; 75(3):301-17. PubMed ID: 107807
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A reexamination of various extraoral appliances in light of recent research findings.
    Braun S; Lee KG; Legan HL
    Angle Orthod; 1999 Feb; 69(1):81-4. PubMed ID: 10022189
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biomechanical effect of platform switching in implant dentistry: a three-dimensional finite element analysis.
    Chang CL; Chen CS; Hsu ML
    Int J Oral Maxillofac Implants; 2010; 25(2):295-304. PubMed ID: 20369087
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The effect of heavy orthopedic forces on the sutures of the facial bones.
    Droschl H
    Angle Orthod; 1975 Jan; 45(1):26-33. PubMed ID: 804828
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Initial displacements and variations of eight human child skulls owing to high-pull headgear traction determined with laser holography.
    Kragt G; Duterloo HS; Algra AM
    Am J Orthod; 1986 May; 89(5):399-406. PubMed ID: 3458372
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Analysis of stress on craniofacial skeleton sutures under protraction with three-dimensional finite element method].
    Sha Y; Deng Y; Fu SY; Lv CX; Yan XJ; Yang L
    Shanghai Kou Qiang Yi Xue; 2009 Jun; 18(3):277-81. PubMed ID: 19649526
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Stress distribution in maxillary first molar periodontium using straight pull headgear with vertical and horizontal tubes: A finite element analysis.
    Feizbakhsh M; Kadkhodaei M; Zandian D; Hosseinpour Z
    Dent Res J (Isfahan); 2017; 14(2):117-124. PubMed ID: 28584535
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The initial effects of orthopedic forces: a study of alterations in the craniofacial complex of a macerated human skull owing to high-pull headgear traction.
    Kragt G; Duterloo HS
    Am J Orthod; 1982 Jan; 81(1):57-64. PubMed ID: 6960697
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Three-dimensional model of the human craniofacial skeleton: method and preliminary results using finite element analysis.
    Tanne K; Miyasaka J; Yamagata Y; Sachdeva R; Tsutsumi S; Sakuda M
    J Biomed Eng; 1988 May; 10(3):246-52. PubMed ID: 3392976
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The load-displacement characteristics of neonatal rat cranial sutures.
    McLaughlin E; Zhang Y; Pashley D; Borke J; Yu J
    Cleft Palate Craniofac J; 2000 Nov; 37(6):590-5. PubMed ID: 11108529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.