These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 8712957)

  • 1. A quantitative visualization study of flow in a scaled-up model of a centrifugal blood pump.
    Ikeda T; Yamane T; Orita T; Tateishi T
    Artif Organs; 1996 Feb; 20(2):132-8. PubMed ID: 8712957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative visualization of flow through a centrifugal blood pump: effect of washout holes.
    Nishida M; Yamane T; Orita T; Asztalos B; Clarke H
    Artif Organs; 1997 Jul; 21(7):720-9. PubMed ID: 9212946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Washout hole flow measurement for the development of a centrifugal blood pump.
    Nishida M; Yamane T; Asztalos B
    Artif Organs; 1998 May; 22(5):386-92. PubMed ID: 9609346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of secondary flow in centrifugal blood pumps using a flow visualization method with a high-speed video camera.
    Sakuma I; Fukui Y; Dohi T
    Artif Organs; 1996 Jun; 20(6):541-5. PubMed ID: 8817952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow visualization as a complementary tool to hemolysis testing in the development of centrifugal blood pumps.
    Yamane T; Asztalos B; Nishida M; Masuzawa T; Takiura K; Taenaka Y; Konishi Y; Miyazoe Y; Ito K
    Artif Organs; 1998 May; 22(5):375-80. PubMed ID: 9609344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow visualization study on centrifugal blood pump using a high speed video camera.
    Sakuma I; Tadokoro H; Fukui Y; Dohi T
    Artif Organs; 1995 Jul; 19(7):665-70. PubMed ID: 8572970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of the secondary flow in a radial coupled centrifugal blood pump based on particle tracking velocimetry.
    Watanabe N; Masuda T; Iida T; Kataoka H; Fujimoto T; Takatani S
    Artif Organs; 2005 Jan; 29(1):26-35. PubMed ID: 15644080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gap velocity measurements of a blood pump model.
    Chua LP; Ong KS; Yu CM; Chan WK; Wong YW
    Artif Organs; 2002 Aug; 26(8):682-94. PubMed ID: 12139495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow visualization study to improve hemocompatibility of a centrifugal blood pump.
    Nishida M; Asztalos B; Yamane T; Masuzawa T; Tsukiya T; Endo S; Taenaka Y; Miyazoe Y; Ito K; Konishi Y
    Artif Organs; 1999 Aug; 23(8):697-703. PubMed ID: 10463491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization study of the transient flow in the centrifugal blood pump impeller.
    Tsukiya T; Taenaka Y; Tatsumi E; Takano H
    ASAIO J; 2002; 48(4):431-6. PubMed ID: 12141476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The flow patterns within the impeller passages of a centrifugal blood pump model.
    Yu SC; Ng BT; Chan WK; Chua LP
    Med Eng Phys; 2000 Jul; 22(6):381-93. PubMed ID: 11086249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A preliminary flow visualization study in a multiple disk centrifugal artificial ventricle.
    Miller GE; Madigan M; Fink R
    Artif Organs; 1995 Jul; 19(7):680-4. PubMed ID: 8572973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational fluid dynamic analyses to establish design process of centrifugal blood pumps.
    Miyazoe Y; Sawairi T; Ito K; Konishi Y; Yamane T; Nishida M; Masuzawa T; Takiura K; Taenaka Y
    Artif Organs; 1998 May; 22(5):381-5. PubMed ID: 9609345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow rate estimation of a centrifugal blood pump using the passively stabilized eccentric position of a magnetically levitated impeller.
    Shida S; Masuzawa T; Osa M
    Int J Artif Organs; 2019 Jun; 42(6):291-298. PubMed ID: 30854913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of design methods of a centrifugal blood pump with in vitro tests, flow visualization, and computational fluid dynamics: results in hemolysis tests.
    Takiura K; Masuzawa T; Endo S; Wakisaka Y; Tatsumi E; Taenaka Y; Takano H; Yamane T; Nishida M; Asztalos B; Konishi Y; Miyazoe Y; Ito K
    Artif Organs; 1998 May; 22(5):393-8. PubMed ID: 9609347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of the impeller-driver magnetic coupling distance on hemolysis in a compact centrifugal pump.
    Nakazawa T; Makinouchi K; Takami Y; Glueck J; Takatani S; Nosé Y
    Artif Organs; 1996 Mar; 20(3):252-7. PubMed ID: 8694696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leakage flow measurements in a bio-centrifugal ventricular assist device model.
    Chua LP; Ong KS; Yu CM; Zhou T
    Artif Organs; 2003 Oct; 27(10):942-59. PubMed ID: 14616541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping of pump efficiency on the pressure-flow curve of a centrifugal blood pump.
    Takami Y; Nakazawa T; Makinouchi K; Glueck J; Benkowski R; Nosé Y
    Artif Organs; 1997 Aug; 21(8):953-7. PubMed ID: 9247186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of Secondary Flow in Centrifugal Blood Pumps Using a Flow Visualization Method with a High-Speed Video Camera.
    Sakuma I; Fukui Y; Dohi T
    Artif Organs; 1996 May; 20(5):541-545. PubMed ID: 28868724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.