These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 8712961)

  • 1. In vitro and in vivo testing of an implantable motor-driven left ventricular assist device.
    Murakami T; Kikugawa D; Fukuhiro Y; Kanazawa S; Fujiwara T; Katsumura T; Kukunaga S; Matsuura Y
    Artif Organs; 1996 Feb; 20(2):152-5. PubMed ID: 8712961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of an implantable motor-driven left ventricular assist device.
    Kikugawa D; Murakami T; Endo K; Fujiwara T; Takatani S
    Artif Organs; 1999 Mar; 23(3):249-52. PubMed ID: 10198716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The implantable fuzzy controlled Helmholtz-left ventricular assist device: first in vitro testing.
    Kaufmann R; Nix C; Klein M; Reul H; Rau G
    Artif Organs; 1997 Feb; 21(2):131-7. PubMed ID: 9028495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implantable physiologic controller for left ventricular assist devices with telemetry capability.
    Asgari SS; Bonde P
    J Thorac Cardiovasc Surg; 2014 Jan; 147(1):192-202. PubMed ID: 24176267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a miniature motor-driven pulsatile LVAD driven by a fuzzy controller.
    Okamoto E; Makino T; Tanaka S; Yasuda T; Akasaka Y; Tani M; Inoue Y; Mitoh A; Mitamura Y
    J Artif Organs; 2007; 10(3):158-64. PubMed ID: 17846714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a flow estimation and control system of an implantable centrifugal blood pump for circulatory assist.
    Wakisaka Y; Okuzono Y; Taenaka Y; Chikanari K; Endo S; Masuzawa T; Takano H
    Artif Organs; 1998 Jun; 22(6):488-92. PubMed ID: 9650670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A transapical-to-aorta double lumen cannula-based neonate left ventricular assist device efficiently unloads the left ventricle in neonate lambs.
    Zhou C; Wang D; Ballard-Croft C; Zhao G; Reda HK; Topaz S; Zwischenberger J
    J Thorac Cardiovasc Surg; 2017 Jan; 153(1):175-182. PubMed ID: 27692763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of left ventricular function and drive pressures on the filling and ejection of a pulsatile pediatric ventricular assist device in an acute animal model.
    Lukic B; Zapanta CM; Khalapyan T; Connell J; Pae WE; Myers JL; Wilson RP; Undar A; Rosenberg G; Weiss WJ
    ASAIO J; 2007; 53(3):379-84. PubMed ID: 17515733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-purpose mechanical circulatory device.
    Mussivand TV; Hendry PJ; Masters RG; Keon WJ
    Int J Artif Organs; 1997 Apr; 20(4):217-21. PubMed ID: 9195239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic and static performance evaluation of the moving-actuator type biventricular assist device, AnyHeart.
    Chung J; Lee JJ; Choi J; Kim J; Min BG
    ASAIO J; 2003; 49(5):599-603. PubMed ID: 14524572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Load-independent analysis of a pulsatile right ventricular assist device.
    Meyers CH; Peterseim DS; Uppal R; Jayawant AM; Campbell KA; Sabiston DC; Smith PK; Van Trigt P
    J Heart Lung Transplant; 1995; 14(1 Pt 1):177-85. PubMed ID: 7727467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a pulsatile pediatric ventricular assist device in an acute right heart failure model.
    Shum-Tim D; Duncan BW; Hraska V; Friehs I; Shin'oka T; Jonas RA
    Ann Thorac Surg; 1997 Nov; 64(5):1374-80. PubMed ID: 9386707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor current waveforms as an index for evaluation of native cardiac function during left ventricular support with a centrifugal blood pump.
    Kikugawa D
    Artif Organs; 2001 Sep; 25(9):703-8. PubMed ID: 11722346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A percutaneously accessible pulsatile left ventricular assist device: modified assist device type 5.
    Imanishi K; Imachi K; Yoshito H; Isoyama T; Abe Y; Chinzei T; Mabuchi K; Kanda K; Tsutsui N; Suma K; Fujimasa I
    Artif Organs; 1996 Feb; 20(2):147-51. PubMed ID: 8712960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a circulatory mock loop for biventricular device testing with various heart conditions.
    Kado Y; Miyamoto T; Horvath DJ; Gao S; Fukamachi K; Karimov JH
    Int J Artif Organs; 2020 Sep; 43(9):600-605. PubMed ID: 32013672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemodynamic and exercise performance with pulsatile and continuous-flow left ventricular assist devices.
    Haft J; Armstrong W; Dyke DB; Aaronson KD; Koelling TM; Farrar DJ; Pagani FD
    Circulation; 2007 Sep; 116(11 Suppl):I8-15. PubMed ID: 17846330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an implantable centrifugal blood pump.
    Goldstein AH; Pacella JJ; Trumble DR; Clark RE
    ASAIO J; 1992; 38(3):M362-5. PubMed ID: 1457882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pressure-flow relationship of centrifugal pump on in vivo hemodynamics: a consideration for design.
    Tagusari O; Yamazaki K; Litwak P; Antaki JF; Watach M; Gordon LM; Kono K; Mori T; Koyanagi H; Griffith BP; Kormos RL
    Artif Organs; 1998 May; 22(5):399-404. PubMed ID: 9609348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The heart-Hemopump interaction: a study of Hemopump flow as a function of cardiac activity.
    Meyns B; Siess T; Laycock S; Reul H; Rau G; Flameng W
    Artif Organs; 1996 Jun; 20(6):641-9. PubMed ID: 8817971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implantation of one piece biventricular assist device by left thoracotomy in an ovine model.
    Kim WG; Jo YH; Min BG; Won TH
    Artif Organs; 2000 Sep; 24(9):760-3. PubMed ID: 11012549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.