BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 8713090)

  • 41. Formation of high-axial-ratio-microstructures from natural and synthetic sphingolipids.
    Goldstein AS; Lukyanov AN; Carlson PA; Yager P; Gelb MH
    Chem Phys Lipids; 1997 Aug; 88(1):21-36. PubMed ID: 9297852
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Glycolipids in chloroplast thylakoid membrane: the mechanism for the biosynthesis and evolutionary origin].
    Ohta H; Shimojima M; Awai K; Masuda T; Takamiya K
    Tanpakushitsu Kakusan Koso; 1997 Dec; 42(16):2601-12. PubMed ID: 9404156
    [No Abstract]   [Full Text] [Related]  

  • 43. Ceramide UDPgalactosyltransferase from myelinating rat brain: purification, cloning, and expression.
    Schulte S; Stoffel W
    Proc Natl Acad Sci U S A; 1993 Nov; 90(21):10265-9. PubMed ID: 7694285
    [TBL] [Abstract][Full Text] [Related]  

  • 44. UDP-galactose:ceramide galactosyl transferase of isolated oligodendroglia.
    Carruthers A; Carey EM
    J Neurochem; 1983 Jul; 41(1):22-9. PubMed ID: 6408227
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel myelin penta- and hexa-acetyl-galactosyl-ceramides: structural characterization and immunoreactivity in cerebrospinal fluid.
    Podbielska M; Dasgupta S; Levery SB; Tourtellotte WW; Annuk H; Moran AP; Hogan EL
    J Lipid Res; 2010 Jun; 51(6):1394-406. PubMed ID: 20154333
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Galactolipid formation in chloroplast envelopes. I. Evidence for two mechanisms in galactosylation.
    van Besouw A; Wintermans JF
    Biochim Biophys Acta; 1978 Apr; 529(1):44-53. PubMed ID: 638180
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Divalent cation-mediated interaction between cerebroside sulfate and cerebrosides: an investigation of the effect of structural variations of lipids by electrospray ionization mass spectrometry.
    Koshy KM; Wang J; Boggs JM
    Biophys J; 1999 Jul; 77(1):306-18. PubMed ID: 10388759
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A carbohydrate-carbohydrate interaction between galactosylceramide-containing liposomes and cerebroside sulfate-containing liposomes: dependence on the glycolipid ceramide composition.
    Stewart RJ; Boggs JM
    Biochemistry; 1993 Oct; 32(40):10666-74. PubMed ID: 8399212
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Encephalopathy caused by ablation of very long acyl chain ceramide synthesis may be largely due to reduced galactosylceramide levels.
    Ben-David O; Pewzner-Jung Y; Brenner O; Laviad EL; Kogot-Levin A; Weissberg I; Biton IE; Pienik R; Wang E; Kelly S; Alroy J; Raas-Rothschild A; Friedman A; Brügger B; Merrill AH; Futerman AH
    J Biol Chem; 2011 Aug; 286(34):30022-33. PubMed ID: 21705317
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of the rat alpha(1,3)galactosyltransferase: evidence for two independent genes encoding glycosyltransferases that synthesize Galalpha(1,3)Gal by two separate glycosylation pathways.
    Taylor SG; McKenzie IF; Sandrin MS
    Glycobiology; 2003 May; 13(5):327-37. PubMed ID: 12626403
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydroxy- and non-hydroxy-galactolipids in developing rat CNS.
    De Haas CG; Lopes-Cardozo M
    Int J Dev Neurosci; 1995 Aug; 13(5):447-54. PubMed ID: 7484215
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transport of proteolipid protein to the plasma membrane does not depend on glycosphingolipid cotransport in oligodendrocyte cultures.
    van der Haar ME; Visser HW; de Vries H; Hoekstra D
    J Neurosci Res; 1998 Feb; 51(3):371-81. PubMed ID: 9486772
    [TBL] [Abstract][Full Text] [Related]  

  • 53. FA2H-dependent fatty acid 2-hydroxylation in postnatal mouse brain.
    Alderson NL; Maldonado EN; Kern MJ; Bhat NR; Hama H
    J Lipid Res; 2006 Dec; 47(12):2772-80. PubMed ID: 16998236
    [TBL] [Abstract][Full Text] [Related]  

  • 54. UPD-galactose:ceramide galactosyltransferase activity in dissociated cell cultures from brain hemispheres of newborn rats.
    Neskovic NM; Labourdette G
    Neurosci Lett; 1980 Aug; 19(1):109-14. PubMed ID: 6820486
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two bacterial glycosphingolipid synthases responsible for the synthesis of glucuronosylceramide and α-galactosylceramide.
    Okino N; Li M; Qu Q; Nakagawa T; Hayashi Y; Matsumoto M; Ishibashi Y; Ito M
    J Biol Chem; 2020 Jul; 295(31):10709-10725. PubMed ID: 32518167
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glycosphingolipid headgroup orientation in fluid phospholipid/cholesterol membranes: similarity for a range of glycolipid fatty acids.
    Morrow MR; Singh DM; Grant CW
    Biophys J; 1995 Sep; 69(3):955-64. PubMed ID: 8519995
    [TBL] [Abstract][Full Text] [Related]  

  • 57. HIV and SIV Envelope Glycoproteins Interact with Glycolipids and Lipids.
    Planes R; Bahraoui E
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511488
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The incorporation of [14C]acetate into the constituent fatty acids of monogalactosyldiglyceride by isolated spinach chloroplasts.
    McKee JW; Hawke JC
    Arch Biochem Biophys; 1979 Oct; 197(1):322-32. PubMed ID: 543720
    [No Abstract]   [Full Text] [Related]  

  • 59. Glycosphingolipid fatty acid arrangement in phospholipid bilayers: cholesterol effects.
    Morrow MR; Singh D; Lu D; Grant CW
    Biophys J; 1995 Jan; 68(1):179-86. PubMed ID: 7711240
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Galactocerebrosides are required postnatally for stromal-dependent bone marrow lymphopoiesis.
    Katayama Y; Frenette PS
    Immunity; 2003 Jun; 18(6):789-800. PubMed ID: 12818160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.