BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 8713092)

  • 1. Structural changes in subdomain 2 of G-actin observed by fluorescence spectroscopy.
    Moraczewska J; Strzelecka-Gołaszewska H; Moens PD; dos Remedios CG
    Biochem J; 1996 Jul; 317 ( Pt 2)(Pt 2):605-11. PubMed ID: 8713092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divalent cation-, nucleotide-, and polymerization-dependent changes in the conformation of subdomain 2 of actin.
    Moraczewska J; Wawro B; Seguro K; Strzelecka-Golaszewska H
    Biophys J; 1999 Jul; 77(1):373-85. PubMed ID: 10388764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of conformational changes in actin by fluorescence resonance energy transfer between tyrosine-69 and cysteine-374.
    Miki M
    Biochemistry; 1991 Nov; 30(45):10878-84. PubMed ID: 1932011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence resonance energy transfer between the nucleotide binding site and Cys-10 in G-actin and F-actin.
    Miki M; Barden JA; dos Remedios CG
    Biochim Biophys Acta; 1986 Jul; 872(1-2):76-82. PubMed ID: 3089284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the type of divalent cation, Ca2+ or Mg2+, bound at the high-affinity site and of the ionic composition of the solution on the structure of F-actin.
    Strzelecka-Golaszewska H; Wozniak A; Hult T; Lindberg U
    Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):713-21. PubMed ID: 8670143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational changes in subdomain 2 of G-actin: fluorescence probing by dansyl ethylenediamine attached to Gln-41.
    Kim E; Motoki M; Seguro K; Muhlrad A; Reisler E
    Biophys J; 1995 Nov; 69(5):2024-32. PubMed ID: 8580345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural effects of cofilin on longitudinal contacts in F-actin.
    Bobkov AA; Muhlrad A; Kokabi K; Vorobiev S; Almo SC; Reisler E
    J Mol Biol; 2002 Nov; 323(4):739-50. PubMed ID: 12419261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational changes in subdomain I of actin induced by proteolytic cleavage within the DNase I-binding loop: energy transfer from tryptophan to AEDANS.
    Kuznetsova I; Antropova O; Turoverov K; Khaitlina S
    FEBS Lett; 1996 Mar; 383(1-2):105-8. PubMed ID: 8612774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cofilin and DNase I affect the conformation of the small domain of actin.
    Dedova IV; Dedov VN; Nosworthy NJ; Hambly BD; dos Remedios CG
    Biophys J; 2002 Jun; 82(6):3134-43. PubMed ID: 12023237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of actin DNase-I-binding loop in myosin subfragment 1-induced polymerization of G-actin: implications for the mechanism of polymerization.
    Wawro B; Khaitlina SY; Galińska-Rakoczy A; Strzelecka-Gołaszewska H
    Biophys J; 2005 Apr; 88(4):2883-96. PubMed ID: 15665122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution properties of tetramethylrhodamine-modified G-actin.
    Kudryashov DS; Reisler E
    Biophys J; 2003 Oct; 85(4):2466-75. PubMed ID: 14507709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic study of conformational changes in subdomain 1 of G-actin: influence of divalent cations.
    Nyitrai M; Hild G; Belágyi J; Somogyi B
    Biophys J; 1997 Oct; 73(4):2023-32. PubMed ID: 9336197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of ATP, ADP and divalent cations in the formation of binary and ternary complexes of actin, cofilin and DNase I.
    Chhabra D; Nosworthy NJ; dos Remedios CG
    Electrophoresis; 2000 Nov; 21(17):3863-9. PubMed ID: 11271505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of myosin LYS-553 with the C-terminus and DNase I-binding loop of actin examined by fluorescence resonance energy transfer.
    Yengo CM; Chrin LR; Berger CL
    J Struct Biol; 2000 Sep; 131(3):187-96. PubMed ID: 11052891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain motion in actin observed by fluorescence resonance energy transfer.
    Miki M; Kouyama T
    Biochemistry; 1994 Aug; 33(33):10171-7. PubMed ID: 8060983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thymosin beta4 induces a conformational change in actin monomers.
    Dedova IV; Nikolaeva OP; Safer D; De La Cruz EM; dos Remedios CG
    Biophys J; 2006 Feb; 90(3):985-92. PubMed ID: 16272441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence energy transfer between epsilon-ATP at the nucleotide binding site and N-(4-dimethylamino-3,5-dinitrophenyl)-maleimide at Cys-373 of G-actin.
    Miki M; Mihashi K
    Biochim Biophys Acta; 1978 Mar; 533(1):163-72. PubMed ID: 638187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for an F-actin like conformation in the actin:DNase I complex.
    Hambly BD; Kiessling P; dos Remedios CG
    Adv Exp Med Biol; 1994; 358():25-34. PubMed ID: 7801808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence studies of the carboxyl-terminal domain of smooth muscle calponin effects of F-actin and salts.
    Bartegi A; Roustan C; Kassab R; Fattoum A
    Eur J Biochem; 1999 Jun; 262(2):335-41. PubMed ID: 10336616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New aspects of the spontaneous polymerization of actin in the presence of salts.
    Galińska-Rakoczy A; Wawro B; Strzelecka-Gołaszewska H
    J Mol Biol; 2009 Apr; 387(4):869-82. PubMed ID: 19340945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.