These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 8713112)

  • 1. A novel series of DNA triple helix-binding ligands.
    Fox KR; Thurston DE; Jenkins TC; Varvaresou A; Tsotinis A; Siatra-Papastaikoudi T
    Biochem Biophys Res Commun; 1996 Jul; 224(3):717-20. PubMed ID: 8713112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of a triplex-binding ligand on parallel and antiparallel DNA triple helices using short unmodified and acridine-linked oligonucleotides.
    Cassidy SA; Strekowski L; Wilson WD; Fox KR
    Biochemistry; 1994 Dec; 33(51):15338-47. PubMed ID: 7803397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNase I footprinting of triple helix formation at polypurine tracts by acridine-linked oligopyrimidines: stringency, structural changes and interaction with minor groove binding ligands.
    Stonehouse TJ; Fox KR
    Biochim Biophys Acta; 1994 Aug; 1218(3):322-30. PubMed ID: 8049258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity of antiparallel DNA triple helix formation.
    Chandler SP; Fox KR
    Biochemistry; 1996 Nov; 35(47):15038-48. PubMed ID: 8942670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA sequence recognition by a novel series of minor groove-binding ligands.
    Fox KR; Yan Y; Gong B
    Anticancer Drug Des; 1999 Jun; 14(3):219-30. PubMed ID: 10500497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA triple helix stabilisation by a naphthylquinoline dimer.
    Keppler M; Zegrocka O; Strekowski L; Fox KR
    FEBS Lett; 1999 Mar; 447(2-3):223-6. PubMed ID: 10214950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of polybenzamides to DNA: studies by DNase I and chlorambucil interference footprinting and comparison with Hoechst 33258.
    Turner PR; Ferguson LR; Denny WA
    Anticancer Drug Des; 1998 Dec; 13(8):941-54. PubMed ID: 10335268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antitumor polycyclic acridines. Part 16. Triplex DNA as a target for DNA-binding polycyclic acridine derivatives.
    Missailidis S; Modi C; Trapani V; Laughton CA; Stevens MF
    Oncol Res; 2005; 15(2):95-105. PubMed ID: 16119007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-dependent effects of minor groove binders on the DNA triple helix motif poly(dA).2poly(dT): influence of antitumoractive nonintercalative bisquaternary ammonium heterocycles.
    Förtsch I; Baguley B; Zimmer C
    Anticancer Drug Des; 1998 Jul; 13(5):417-29. PubMed ID: 9702208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic studies on the formation of acridine-linked DNA triple helices.
    Fox KR
    FEBS Lett; 1995 Jan; 357(3):312-6. PubMed ID: 7835435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Footprinting: a method for determining the sequence selectivity, affinity and kinetics of DNA-binding ligands.
    Hampshire AJ; Rusling DA; Broughton-Head VJ; Fox KR
    Methods; 2007 Jun; 42(2):128-40. PubMed ID: 17472895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of DNA triple helices incorporating blocks of G.GC and T.AT triplets using short acridine-linked oligonucleotides.
    Fox KR
    Nucleic Acids Res; 1994 Jun; 22(11):2016-21. PubMed ID: 8029007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining nucleoside analogues to achieve recognition of oligopurine tracts by triplex-forming oligonucleotides at physiological pH.
    Rusling DA; Le Strat L; Powers VE; Broughton-Head VJ; Booth J; Lack O; Brown T; Fox KR
    FEBS Lett; 2005 Dec; 579(29):6616-20. PubMed ID: 16293248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization of DNA triple helices by a series of mono- and disubstituted amidoanthraquinones.
    Keppler MD; Read MA; Perry PJ; Trent JO; Jenkins TC; Reszka AP; Neidle S; Fox KR
    Eur J Biochem; 1999 Aug; 263(3):817-25. PubMed ID: 10469146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Footprinting studies on ligands which stabilize DNA triplexes: effects on stringency within a parallel triple helix.
    Chandler SP; Strekowski L; Wilson WD; Fox KR
    Biochemistry; 1995 May; 34(21):7234-42. PubMed ID: 7766634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative dimerization of a heterocyclic diamidine determines sequence-specific DNA recognition.
    Tanious F; Wilson WD; Wang L; Kumar A; Boykin DW; Marty C; Baldeyrou B; Bailly C
    Biochemistry; 2003 Nov; 42(46):13576-86. PubMed ID: 14622004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable recognition of TA interruptions by triplex forming oligonucleotides containing a novel nucleoside.
    Wang Y; Rusling DA; Powers VE; Lack O; Osborne SD; Fox KR; Brown T
    Biochemistry; 2005 Apr; 44(15):5884-92. PubMed ID: 15823047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of purine motif DNA triplex by a tetrapeptide from the binding domain of HMGBI protein.
    Jain A; Akanchha S; Rajeswari MR
    Biochimie; 2005 Aug; 87(8):781-90. PubMed ID: 15885869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA triple helix stabilisation by covalent attachment of a triplex-specific ligand.
    Keppler MD; McKeen CM; Zegrocka O; Strekowski L; Brown T; Fox KR
    Biochim Biophys Acta; 1999 Oct; 1447(2-3):137-45. PubMed ID: 10542311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a triplex-binding ligand on triple helix formation at a site within a natural DNA fragment.
    Brown PM; Drabble A; Fox KR
    Biochem J; 1996 Mar; 314 ( Pt 2)(Pt 2):427-32. PubMed ID: 8670052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.